| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsphoidmvle2.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 2 |
|
hsphoidmvle2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hsphoidmvle2.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 ∖ 𝑌 ) ) |
| 4 |
|
hsphoidmvle2.y |
⊢ 𝑋 = ( 𝑌 ∪ { 𝑍 } ) |
| 5 |
|
hsphoidmvle2.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
|
hsphoidmvle2.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 7 |
|
hsphoidmvle2.e |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 8 |
|
hsphoidmvle2.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑐 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑐 ‘ 𝑗 ) , if ( ( 𝑐 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑐 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
| 9 |
|
hsphoidmvle2.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 10 |
|
hsphoidmvle2.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 11 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) |
| 12 |
9 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ ) |
| 13 |
10 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 14 |
13 5
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ∈ ℝ ) |
| 15 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ∈ ℝ ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ∈ ℝ ) |
| 17 |
13 6
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ∈ ℝ ) |
| 18 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) ∈ ℝ ) |
| 19 |
12 17 18
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) ∈ ℝ ) |
| 20 |
|
difssd |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ) |
| 21 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ) → ( 𝑋 ∖ { 𝑍 } ) ∈ Fin ) |
| 22 |
2 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∖ { 𝑍 } ) ∈ Fin ) |
| 23 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑘 ∈ 𝑋 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑘 ∈ 𝑋 ) |
| 25 |
9
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 26 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 27 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 28 |
25 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 29 |
24 28
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 30 |
22 29
|
fprodrecl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 31 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 32 |
24 25
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 33 |
24 26
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 34 |
33
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 35 |
|
icombl |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol ) |
| 36 |
32 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol ) |
| 37 |
|
volge0 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom vol → 0 ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 0 ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 39 |
31 22 29 38
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 40 |
14
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ∈ ℝ* ) |
| 41 |
|
icombl |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ∈ dom vol ) |
| 42 |
12 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ∈ dom vol ) |
| 43 |
17
|
rexrd |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ∈ ℝ* ) |
| 44 |
|
icombl |
⊢ ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ∈ ℝ* ) → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ∈ dom vol ) |
| 45 |
12 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ∈ dom vol ) |
| 46 |
12
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ) |
| 47 |
12
|
leidd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ≤ ( 𝐴 ‘ 𝑍 ) ) |
| 48 |
13
|
leidd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑍 ) ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐵 ‘ 𝑍 ) ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 50 |
|
iftrue |
⊢ ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) = ( 𝐵 ‘ 𝑍 ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) = ( 𝐵 ‘ 𝑍 ) ) |
| 52 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 53 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 54 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐷 ∈ ℝ ) |
| 55 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) |
| 56 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐶 ≤ 𝐷 ) |
| 57 |
52 53 54 55 56
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) |
| 58 |
57
|
iftrued |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) = ( 𝐵 ‘ 𝑍 ) ) |
| 59 |
51 58
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ↔ ( 𝐵 ‘ 𝑍 ) ≤ ( 𝐵 ‘ 𝑍 ) ) ) |
| 60 |
49 59
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 61 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝜑 ) |
| 62 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) |
| 63 |
61 5
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 64 |
61 13
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 65 |
63 64
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( 𝐶 < ( 𝐵 ‘ 𝑍 ) ↔ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) ) |
| 66 |
62 65
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐶 < ( 𝐵 ‘ 𝑍 ) ) |
| 67 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) → 𝐶 ∈ ℝ ) |
| 68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) → ( 𝐵 ‘ 𝑍 ) ∈ ℝ ) |
| 69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) → 𝐶 < ( 𝐵 ‘ 𝑍 ) ) |
| 70 |
67 68 69
|
ltled |
⊢ ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) → 𝐶 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → 𝐶 ≤ ( 𝐵 ‘ 𝑍 ) ) |
| 72 |
|
iftrue |
⊢ ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) = ( 𝐵 ‘ 𝑍 ) ) |
| 73 |
72
|
eqcomd |
⊢ ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 → ( 𝐵 ‘ 𝑍 ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → ( 𝐵 ‘ 𝑍 ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 75 |
71 74
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → 𝐶 ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 76 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → 𝐶 ≤ 𝐷 ) |
| 77 |
|
iffalse |
⊢ ( ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) = 𝐷 ) |
| 78 |
77
|
eqcomd |
⊢ ( ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 → 𝐷 = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → 𝐷 = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 80 |
76 79
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 ) → 𝐶 ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 81 |
75 80
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐶 < ( 𝐵 ‘ 𝑍 ) ) → 𝐶 ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 82 |
61 66 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → 𝐶 ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 83 |
|
iffalse |
⊢ ( ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) = 𝐶 ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) = 𝐶 ) |
| 85 |
84
|
breq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → ( if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ↔ 𝐶 ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) |
| 86 |
82 85
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 ) → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 87 |
60 86
|
pm2.61dan |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 88 |
|
icossico |
⊢ ( ( ( ( 𝐴 ‘ 𝑍 ) ∈ ℝ* ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ∈ ℝ* ) ∧ ( ( 𝐴 ‘ 𝑍 ) ≤ ( 𝐴 ‘ 𝑍 ) ∧ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ≤ if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ⊆ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) |
| 89 |
46 43 47 87 88
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ⊆ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) |
| 90 |
|
volss |
⊢ ( ( ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ∈ dom vol ∧ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ∈ dom vol ∧ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ⊆ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) ) |
| 91 |
42 45 89 90
|
syl3anc |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ≤ ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) ) |
| 92 |
16 19 30 39 91
|
lemul1ad |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ≤ ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 93 |
11
|
ne0d |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 94 |
8 5 2 10
|
hsphoif |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) : 𝑋 ⟶ ℝ ) |
| 95 |
1 2 93 9 94
|
hoidmvn0val |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) |
| 96 |
94
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 97 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 98 |
25 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 99 |
98
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 100 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑍 ) ) |
| 101 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) = ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) |
| 102 |
100 101
|
oveq12d |
⊢ ( 𝑘 = 𝑍 → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) |
| 103 |
102
|
fveq2d |
⊢ ( 𝑘 = 𝑍 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) |
| 104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑍 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) |
| 105 |
8 5 2 10 11
|
hsphoival |
⊢ ( 𝜑 → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑌 , ( 𝐵 ‘ 𝑍 ) , if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) |
| 106 |
3
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑌 ) |
| 107 |
106
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑍 ∈ 𝑌 , ( 𝐵 ‘ 𝑍 ) , if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) |
| 108 |
105 107
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) = ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) |
| 110 |
109
|
fveq2d |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑍 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ) |
| 112 |
104 111
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑍 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) ) |
| 113 |
2 99 11 112
|
fprodsplit1 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) ) |
| 114 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝐶 ∈ ℝ ) |
| 115 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑋 ∈ Fin ) |
| 116 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 117 |
8 114 115 116 24
|
hsphoival |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝑌 , ( 𝐵 ‘ 𝑘 ) , if ( ( 𝐵 ‘ 𝑘 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑘 ) , 𝐶 ) ) ) |
| 118 |
23 4
|
eleqtrdi |
⊢ ( 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑘 ∈ ( 𝑌 ∪ { 𝑍 } ) ) |
| 119 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) → ¬ 𝑘 ∈ { 𝑍 } ) |
| 120 |
|
elunnel2 |
⊢ ( ( 𝑘 ∈ ( 𝑌 ∪ { 𝑍 } ) ∧ ¬ 𝑘 ∈ { 𝑍 } ) → 𝑘 ∈ 𝑌 ) |
| 121 |
118 119 120
|
syl2anc |
⊢ ( 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑘 ∈ 𝑌 ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑘 ∈ 𝑌 ) |
| 123 |
122
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → if ( 𝑘 ∈ 𝑌 , ( 𝐵 ‘ 𝑘 ) , if ( ( 𝐵 ‘ 𝑘 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑘 ) , 𝐶 ) ) = ( 𝐵 ‘ 𝑘 ) ) |
| 124 |
117 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 127 |
126
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 128 |
127
|
oveq2d |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 129 |
95 113 128
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 130 |
8 6 2 10
|
hsphoif |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) : 𝑋 ⟶ ℝ ) |
| 131 |
1 2 93 9 130
|
hoidmvn0val |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) |
| 132 |
130
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 133 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 134 |
25 132 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 135 |
134
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 136 |
|
fveq2 |
⊢ ( 𝑘 = 𝑍 → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) = ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) |
| 137 |
100 136
|
oveq12d |
⊢ ( 𝑘 = 𝑍 → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) |
| 138 |
137
|
fveq2d |
⊢ ( 𝑘 = 𝑍 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) |
| 139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑍 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) |
| 140 |
2 135 11 139
|
fprodsplit1 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) ) |
| 141 |
8 6 2 10 11
|
hsphoival |
⊢ ( 𝜑 → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑌 , ( 𝐵 ‘ 𝑍 ) , if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) |
| 142 |
106
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑍 ∈ 𝑌 , ( 𝐵 ‘ 𝑍 ) , if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 143 |
141 142
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) = if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) = ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( 𝜑 → ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) ) |
| 146 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝐷 ∈ ℝ ) |
| 147 |
8 146 115 116 24
|
hsphoival |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝑌 , ( 𝐵 ‘ 𝑘 ) , if ( ( 𝐵 ‘ 𝑘 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑘 ) , 𝐷 ) ) ) |
| 148 |
122
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → if ( 𝑘 ∈ 𝑌 , ( 𝐵 ‘ 𝑘 ) , if ( ( 𝐵 ‘ 𝑘 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑘 ) , 𝐷 ) ) = ( 𝐵 ‘ 𝑘 ) ) |
| 149 |
147 148
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 151 |
150
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 152 |
151
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 153 |
145 152
|
oveq12d |
⊢ ( 𝜑 → ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 154 |
131 140 153
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ) = ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 155 |
129 154
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ) ≤ ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ) ↔ ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐶 , ( 𝐵 ‘ 𝑍 ) , 𝐶 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ≤ ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 ) ≤ 𝐷 , ( 𝐵 ‘ 𝑍 ) , 𝐷 ) ) ) · ∏ 𝑘 ∈ ( 𝑋 ∖ { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) ) |
| 156 |
92 155
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ) ≤ ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ) ) |