| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hsphoidmvle2.l | ⊢ 𝐿  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 2 |  | hsphoidmvle2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hsphoidmvle2.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋  ∖  𝑌 ) ) | 
						
							| 4 |  | hsphoidmvle2.y | ⊢ 𝑋  =  ( 𝑌  ∪  { 𝑍 } ) | 
						
							| 5 |  | hsphoidmvle2.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | hsphoidmvle2.d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 7 |  | hsphoidmvle2.e | ⊢ ( 𝜑  →  𝐶  ≤  𝐷 ) | 
						
							| 8 |  | hsphoidmvle2.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑐  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑐 ‘ 𝑗 ) ,  if ( ( 𝑐 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑐 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 9 |  | hsphoidmvle2.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 10 |  | hsphoidmvle2.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 11 | 3 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑋 ) | 
						
							| 12 | 9 11 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 13 | 10 11 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 14 | 13 5 | ifcld | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ∈  ℝ ) | 
						
							| 15 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 17 | 13 6 | ifcld | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ∈  ℝ ) | 
						
							| 18 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ∈  ℝ ) | 
						
							| 19 | 12 17 18 | syl2anc | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ∈  ℝ ) | 
						
							| 20 |  | difssd | ⊢ ( 𝜑  →  ( 𝑋  ∖  { 𝑍 } )  ⊆  𝑋 ) | 
						
							| 21 |  | ssfi | ⊢ ( ( 𝑋  ∈  Fin  ∧  ( 𝑋  ∖  { 𝑍 } )  ⊆  𝑋 )  →  ( 𝑋  ∖  { 𝑍 } )  ∈  Fin ) | 
						
							| 22 | 2 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∖  { 𝑍 } )  ∈  Fin ) | 
						
							| 23 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } )  →  𝑘  ∈  𝑋 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑘  ∈  𝑋 ) | 
						
							| 25 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 26 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 27 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 28 | 25 26 27 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 29 | 24 28 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 30 | 22 29 | fprodrecl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 32 | 24 25 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 33 | 24 26 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 34 | 33 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 35 |  | icombl | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  vol ) | 
						
							| 36 | 32 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  vol ) | 
						
							| 37 |  | volge0 | ⊢ ( ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  0  ≤  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 39 | 31 22 29 38 | fprodge0 | ⊢ ( 𝜑  →  0  ≤  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 40 | 14 | rexrd | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ∈  ℝ* ) | 
						
							| 41 |  | icombl | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ∈  ℝ* )  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ∈  dom  vol ) | 
						
							| 42 | 12 40 41 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ∈  dom  vol ) | 
						
							| 43 | 17 | rexrd | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ∈  ℝ* ) | 
						
							| 44 |  | icombl | ⊢ ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ∈  ℝ* )  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) )  ∈  dom  vol ) | 
						
							| 45 | 12 43 44 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) )  ∈  dom  vol ) | 
						
							| 46 | 12 | rexrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ∈  ℝ* ) | 
						
							| 47 | 12 | leidd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑍 )  ≤  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 48 | 13 | leidd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑍 )  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐵 ‘ 𝑍 )  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 50 |  | iftrue | ⊢ ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 52 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 53 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐶  ∈  ℝ ) | 
						
							| 54 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐷  ∈  ℝ ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ) | 
						
							| 56 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐶  ≤  𝐷 ) | 
						
							| 57 | 52 53 54 55 56 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ) | 
						
							| 58 | 57 | iftrued | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 59 | 51 58 | breq12d | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ↔  ( 𝐵 ‘ 𝑍 )  ≤  ( 𝐵 ‘ 𝑍 ) ) ) | 
						
							| 60 | 49 59 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 61 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝜑 ) | 
						
							| 62 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ) | 
						
							| 63 | 61 5 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐶  ∈  ℝ ) | 
						
							| 64 | 61 13 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 65 | 63 64 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( 𝐶  <  ( 𝐵 ‘ 𝑍 )  ↔  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ) ) | 
						
							| 66 | 62 65 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐶  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 67 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 68 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  →  ( 𝐵 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐶  <  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 70 | 67 68 69 | ltled | ⊢ ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐶  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  𝐶  ≤  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 72 |  | iftrue | ⊢ ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  =  ( 𝐵 ‘ 𝑍 ) ) | 
						
							| 73 | 72 | eqcomd | ⊢ ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷  →  ( 𝐵 ‘ 𝑍 )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  ( 𝐵 ‘ 𝑍 )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 75 | 71 74 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  𝐶  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 76 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  𝐶  ≤  𝐷 ) | 
						
							| 77 |  | iffalse | ⊢ ( ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐷  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  =  𝐷 ) | 
						
							| 78 | 77 | eqcomd | ⊢ ( ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐷  →  𝐷  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  𝐷  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 80 | 76 79 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐷 )  →  𝐶  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 81 | 75 80 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐶  <  ( 𝐵 ‘ 𝑍 ) )  →  𝐶  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 82 | 61 66 81 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  𝐶  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 83 |  | iffalse | ⊢ ( ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  =  𝐶 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  =  𝐶 ) | 
						
							| 85 | 84 | breq1d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  ( if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ↔  𝐶  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) | 
						
							| 86 | 82 85 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐵 ‘ 𝑍 )  ≤  𝐶 )  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 87 | 60 86 | pm2.61dan | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 88 |  | icossico | ⊢ ( ( ( ( 𝐴 ‘ 𝑍 )  ∈  ℝ*  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 )  ∈  ℝ* )  ∧  ( ( 𝐴 ‘ 𝑍 )  ≤  ( 𝐴 ‘ 𝑍 )  ∧  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 )  ≤  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) | 
						
							| 89 | 46 43 47 87 88 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) | 
						
							| 90 |  | volss | ⊢ ( ( ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ∈  dom  vol  ∧  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) )  ∈  dom  vol  ∧  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  ⊆  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ≤  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) ) | 
						
							| 91 | 42 45 89 90 | syl3anc | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ≤  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) ) | 
						
							| 92 | 16 19 30 39 91 | lemul1ad | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) )  ≤  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 93 | 11 | ne0d | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 94 | 8 5 2 10 | hsphoif | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) : 𝑋 ⟶ ℝ ) | 
						
							| 95 | 1 2 93 9 94 | hoidmvn0val | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) | 
						
							| 96 | 94 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 97 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 98 | 25 96 97 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 99 | 98 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑍 ) ) | 
						
							| 101 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 )  =  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) | 
						
							| 102 | 100 101 | oveq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( 𝑘  =  𝑍  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) | 
						
							| 105 | 8 5 2 10 11 | hsphoival | ⊢ ( 𝜑  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝐵 ‘ 𝑍 ) ,  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) ) | 
						
							| 106 | 3 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑌 ) | 
						
							| 107 | 106 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( 𝐵 ‘ 𝑍 ) ,  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) | 
						
							| 108 | 105 107 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) ) | 
						
							| 110 | 109 | fveq2d | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑍 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) ) ) | 
						
							| 112 | 104 111 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) ) ) | 
						
							| 113 | 2 99 11 112 | fprodsplit1 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 114 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝐶  ∈  ℝ ) | 
						
							| 115 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑋  ∈  Fin ) | 
						
							| 116 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 117 | 8 114 115 116 24 | hsphoival | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝐵 ‘ 𝑘 ) ,  if ( ( 𝐵 ‘ 𝑘 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑘 ) ,  𝐶 ) ) ) | 
						
							| 118 | 23 4 | eleqtrdi | ⊢ ( 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } )  →  𝑘  ∈  ( 𝑌  ∪  { 𝑍 } ) ) | 
						
							| 119 |  | eldifn | ⊢ ( 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } )  →  ¬  𝑘  ∈  { 𝑍 } ) | 
						
							| 120 |  | elunnel2 | ⊢ ( ( 𝑘  ∈  ( 𝑌  ∪  { 𝑍 } )  ∧  ¬  𝑘  ∈  { 𝑍 } )  →  𝑘  ∈  𝑌 ) | 
						
							| 121 | 118 119 120 | syl2anc | ⊢ ( 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } )  →  𝑘  ∈  𝑌 ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑘  ∈  𝑌 ) | 
						
							| 123 | 122 | iftrued | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝐵 ‘ 𝑘 ) ,  if ( ( 𝐵 ‘ 𝑘 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑘 ) ,  𝐶 ) )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 124 | 117 123 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 125 | 124 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 127 | 126 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 128 | 127 | oveq2d | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 129 | 95 113 128 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 130 | 8 6 2 10 | hsphoif | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) : 𝑋 ⟶ ℝ ) | 
						
							| 131 | 1 2 93 9 130 | hoidmvn0val | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) | 
						
							| 132 | 130 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 133 |  | volicore | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 134 | 25 132 133 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 135 | 134 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝑘  =  𝑍  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 )  =  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) | 
						
							| 137 | 100 136 | oveq12d | ⊢ ( 𝑘  =  𝑍  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) | 
						
							| 138 | 137 | fveq2d | ⊢ ( 𝑘  =  𝑍  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) | 
						
							| 139 | 138 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑍 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) ) ) | 
						
							| 140 | 2 135 11 139 | fprodsplit1 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 141 | 8 6 2 10 11 | hsphoival | ⊢ ( 𝜑  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 )  =  if ( 𝑍  ∈  𝑌 ,  ( 𝐵 ‘ 𝑍 ) ,  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) | 
						
							| 142 | 106 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑍  ∈  𝑌 ,  ( 𝐵 ‘ 𝑍 ) ,  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 143 | 141 142 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 )  =  if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) )  =  ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) | 
						
							| 145 | 144 | fveq2d | ⊢ ( 𝜑  →  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) ) ) | 
						
							| 146 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝐷  ∈  ℝ ) | 
						
							| 147 | 8 146 115 116 24 | hsphoival | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝑌 ,  ( 𝐵 ‘ 𝑘 ) ,  if ( ( 𝐵 ‘ 𝑘 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑘 ) ,  𝐷 ) ) ) | 
						
							| 148 | 122 | iftrued | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  if ( 𝑘  ∈  𝑌 ,  ( 𝐵 ‘ 𝑘 ) ,  if ( ( 𝐵 ‘ 𝑘 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑘 ) ,  𝐷 ) )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 149 | 147 148 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 151 | 150 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 152 | 151 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 153 | 145 152 | oveq12d | ⊢ ( 𝜑  →  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑍 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ‘ 𝑘 ) ) ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 154 | 131 140 153 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) )  =  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 155 | 129 154 | breq12d | ⊢ ( 𝜑  →  ( ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) )  ≤  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) )  ↔  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐶 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐶 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) )  ≤  ( ( vol ‘ ( ( 𝐴 ‘ 𝑍 ) [,) if ( ( 𝐵 ‘ 𝑍 )  ≤  𝐷 ,  ( 𝐵 ‘ 𝑍 ) ,  𝐷 ) ) )  ·  ∏ 𝑘  ∈  ( 𝑋  ∖  { 𝑍 } ) ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 156 | 92 155 | mpbird | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐶 ) ‘ 𝐵 ) )  ≤  ( 𝐴 ( 𝐿 ‘ 𝑋 ) ( ( 𝐻 ‘ 𝐷 ) ‘ 𝐵 ) ) ) |