Metamath Proof Explorer


Theorem hsphoidmvle2

Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoidmvle2.l L = x Fin a x , b x if x = 0 k x vol a k b k
hsphoidmvle2.x φ X Fin
hsphoidmvle2.z φ Z X Y
hsphoidmvle2.y X = Y Z
hsphoidmvle2.c φ C
hsphoidmvle2.d φ D
hsphoidmvle2.e φ C D
hsphoidmvle2.h H = x c X j X if j Y c j if c j x c j x
hsphoidmvle2.a φ A : X
hsphoidmvle2.b φ B : X
Assertion hsphoidmvle2 φ A L X H C B A L X H D B

Proof

Step Hyp Ref Expression
1 hsphoidmvle2.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hsphoidmvle2.x φ X Fin
3 hsphoidmvle2.z φ Z X Y
4 hsphoidmvle2.y X = Y Z
5 hsphoidmvle2.c φ C
6 hsphoidmvle2.d φ D
7 hsphoidmvle2.e φ C D
8 hsphoidmvle2.h H = x c X j X if j Y c j if c j x c j x
9 hsphoidmvle2.a φ A : X
10 hsphoidmvle2.b φ B : X
11 3 eldifad φ Z X
12 9 11 ffvelrnd φ A Z
13 10 11 ffvelrnd φ B Z
14 13 5 ifcld φ if B Z C B Z C
15 volicore A Z if B Z C B Z C vol A Z if B Z C B Z C
16 12 14 15 syl2anc φ vol A Z if B Z C B Z C
17 13 6 ifcld φ if B Z D B Z D
18 volicore A Z if B Z D B Z D vol A Z if B Z D B Z D
19 12 17 18 syl2anc φ vol A Z if B Z D B Z D
20 difssd φ X Z X
21 ssfi X Fin X Z X X Z Fin
22 2 20 21 syl2anc φ X Z Fin
23 eldifi k X Z k X
24 23 adantl φ k X Z k X
25 9 ffvelrnda φ k X A k
26 10 ffvelrnda φ k X B k
27 volicore A k B k vol A k B k
28 25 26 27 syl2anc φ k X vol A k B k
29 24 28 syldan φ k X Z vol A k B k
30 22 29 fprodrecl φ k X Z vol A k B k
31 nfv k φ
32 24 25 syldan φ k X Z A k
33 24 26 syldan φ k X Z B k
34 33 rexrd φ k X Z B k *
35 icombl A k B k * A k B k dom vol
36 32 34 35 syl2anc φ k X Z A k B k dom vol
37 volge0 A k B k dom vol 0 vol A k B k
38 36 37 syl φ k X Z 0 vol A k B k
39 31 22 29 38 fprodge0 φ 0 k X Z vol A k B k
40 14 rexrd φ if B Z C B Z C *
41 icombl A Z if B Z C B Z C * A Z if B Z C B Z C dom vol
42 12 40 41 syl2anc φ A Z if B Z C B Z C dom vol
43 17 rexrd φ if B Z D B Z D *
44 icombl A Z if B Z D B Z D * A Z if B Z D B Z D dom vol
45 12 43 44 syl2anc φ A Z if B Z D B Z D dom vol
46 12 rexrd φ A Z *
47 12 leidd φ A Z A Z
48 13 leidd φ B Z B Z
49 48 adantr φ B Z C B Z B Z
50 iftrue B Z C if B Z C B Z C = B Z
51 50 adantl φ B Z C if B Z C B Z C = B Z
52 13 adantr φ B Z C B Z
53 5 adantr φ B Z C C
54 6 adantr φ B Z C D
55 simpr φ B Z C B Z C
56 7 adantr φ B Z C C D
57 52 53 54 55 56 letrd φ B Z C B Z D
58 57 iftrued φ B Z C if B Z D B Z D = B Z
59 51 58 breq12d φ B Z C if B Z C B Z C if B Z D B Z D B Z B Z
60 49 59 mpbird φ B Z C if B Z C B Z C if B Z D B Z D
61 simpl φ ¬ B Z C φ
62 simpr φ ¬ B Z C ¬ B Z C
63 61 5 syl φ ¬ B Z C C
64 61 13 syl φ ¬ B Z C B Z
65 63 64 ltnled φ ¬ B Z C C < B Z ¬ B Z C
66 62 65 mpbird φ ¬ B Z C C < B Z
67 5 adantr φ C < B Z C
68 13 adantr φ C < B Z B Z
69 simpr φ C < B Z C < B Z
70 67 68 69 ltled φ C < B Z C B Z
71 70 adantr φ C < B Z B Z D C B Z
72 iftrue B Z D if B Z D B Z D = B Z
73 72 eqcomd B Z D B Z = if B Z D B Z D
74 73 adantl φ C < B Z B Z D B Z = if B Z D B Z D
75 71 74 breqtrd φ C < B Z B Z D C if B Z D B Z D
76 7 ad2antrr φ C < B Z ¬ B Z D C D
77 iffalse ¬ B Z D if B Z D B Z D = D
78 77 eqcomd ¬ B Z D D = if B Z D B Z D
79 78 adantl φ C < B Z ¬ B Z D D = if B Z D B Z D
80 76 79 breqtrd φ C < B Z ¬ B Z D C if B Z D B Z D
81 75 80 pm2.61dan φ C < B Z C if B Z D B Z D
82 61 66 81 syl2anc φ ¬ B Z C C if B Z D B Z D
83 iffalse ¬ B Z C if B Z C B Z C = C
84 83 adantl φ ¬ B Z C if B Z C B Z C = C
85 84 breq1d φ ¬ B Z C if B Z C B Z C if B Z D B Z D C if B Z D B Z D
86 82 85 mpbird φ ¬ B Z C if B Z C B Z C if B Z D B Z D
87 60 86 pm2.61dan φ if B Z C B Z C if B Z D B Z D
88 icossico A Z * if B Z D B Z D * A Z A Z if B Z C B Z C if B Z D B Z D A Z if B Z C B Z C A Z if B Z D B Z D
89 46 43 47 87 88 syl22anc φ A Z if B Z C B Z C A Z if B Z D B Z D
90 volss A Z if B Z C B Z C dom vol A Z if B Z D B Z D dom vol A Z if B Z C B Z C A Z if B Z D B Z D vol A Z if B Z C B Z C vol A Z if B Z D B Z D
91 42 45 89 90 syl3anc φ vol A Z if B Z C B Z C vol A Z if B Z D B Z D
92 16 19 30 39 91 lemul1ad φ vol A Z if B Z C B Z C k X Z vol A k B k vol A Z if B Z D B Z D k X Z vol A k B k
93 11 ne0d φ X
94 8 5 2 10 hsphoif φ H C B : X
95 1 2 93 9 94 hoidmvn0val φ A L X H C B = k X vol A k H C B k
96 94 ffvelrnda φ k X H C B k
97 volicore A k H C B k vol A k H C B k
98 25 96 97 syl2anc φ k X vol A k H C B k
99 98 recnd φ k X vol A k H C B k
100 fveq2 k = Z A k = A Z
101 fveq2 k = Z H C B k = H C B Z
102 100 101 oveq12d k = Z A k H C B k = A Z H C B Z
103 102 fveq2d k = Z vol A k H C B k = vol A Z H C B Z
104 103 adantl φ k = Z vol A k H C B k = vol A Z H C B Z
105 8 5 2 10 11 hsphoival φ H C B Z = if Z Y B Z if B Z C B Z C
106 3 eldifbd φ ¬ Z Y
107 106 iffalsed φ if Z Y B Z if B Z C B Z C = if B Z C B Z C
108 105 107 eqtrd φ H C B Z = if B Z C B Z C
109 108 oveq2d φ A Z H C B Z = A Z if B Z C B Z C
110 109 fveq2d φ vol A Z H C B Z = vol A Z if B Z C B Z C
111 110 adantr φ k = Z vol A Z H C B Z = vol A Z if B Z C B Z C
112 104 111 eqtrd φ k = Z vol A k H C B k = vol A Z if B Z C B Z C
113 2 99 11 112 fprodsplit1 φ k X vol A k H C B k = vol A Z if B Z C B Z C k X Z vol A k H C B k
114 5 adantr φ k X Z C
115 2 adantr φ k X Z X Fin
116 10 adantr φ k X Z B : X
117 8 114 115 116 24 hsphoival φ k X Z H C B k = if k Y B k if B k C B k C
118 23 4 eleqtrdi k X Z k Y Z
119 eldifn k X Z ¬ k Z
120 elunnel2 k Y Z ¬ k Z k Y
121 118 119 120 syl2anc k X Z k Y
122 121 adantl φ k X Z k Y
123 122 iftrued φ k X Z if k Y B k if B k C B k C = B k
124 117 123 eqtrd φ k X Z H C B k = B k
125 124 oveq2d φ k X Z A k H C B k = A k B k
126 125 fveq2d φ k X Z vol A k H C B k = vol A k B k
127 126 prodeq2dv φ k X Z vol A k H C B k = k X Z vol A k B k
128 127 oveq2d φ vol A Z if B Z C B Z C k X Z vol A k H C B k = vol A Z if B Z C B Z C k X Z vol A k B k
129 95 113 128 3eqtrd φ A L X H C B = vol A Z if B Z C B Z C k X Z vol A k B k
130 8 6 2 10 hsphoif φ H D B : X
131 1 2 93 9 130 hoidmvn0val φ A L X H D B = k X vol A k H D B k
132 130 ffvelrnda φ k X H D B k
133 volicore A k H D B k vol A k H D B k
134 25 132 133 syl2anc φ k X vol A k H D B k
135 134 recnd φ k X vol A k H D B k
136 fveq2 k = Z H D B k = H D B Z
137 100 136 oveq12d k = Z A k H D B k = A Z H D B Z
138 137 fveq2d k = Z vol A k H D B k = vol A Z H D B Z
139 138 adantl φ k = Z vol A k H D B k = vol A Z H D B Z
140 2 135 11 139 fprodsplit1 φ k X vol A k H D B k = vol A Z H D B Z k X Z vol A k H D B k
141 8 6 2 10 11 hsphoival φ H D B Z = if Z Y B Z if B Z D B Z D
142 106 iffalsed φ if Z Y B Z if B Z D B Z D = if B Z D B Z D
143 141 142 eqtrd φ H D B Z = if B Z D B Z D
144 143 oveq2d φ A Z H D B Z = A Z if B Z D B Z D
145 144 fveq2d φ vol A Z H D B Z = vol A Z if B Z D B Z D
146 6 adantr φ k X Z D
147 8 146 115 116 24 hsphoival φ k X Z H D B k = if k Y B k if B k D B k D
148 122 iftrued φ k X Z if k Y B k if B k D B k D = B k
149 147 148 eqtrd φ k X Z H D B k = B k
150 149 oveq2d φ k X Z A k H D B k = A k B k
151 150 fveq2d φ k X Z vol A k H D B k = vol A k B k
152 151 prodeq2dv φ k X Z vol A k H D B k = k X Z vol A k B k
153 145 152 oveq12d φ vol A Z H D B Z k X Z vol A k H D B k = vol A Z if B Z D B Z D k X Z vol A k B k
154 131 140 153 3eqtrd φ A L X H D B = vol A Z if B Z D B Z D k X Z vol A k B k
155 129 154 breq12d φ A L X H C B A L X H D B vol A Z if B Z C B Z C k X Z vol A k B k vol A Z if B Z D B Z D k X Z vol A k B k
156 92 155 mpbird φ A L X H C B A L X H D B