Metamath Proof Explorer


Theorem hsphoidmvle

Description: The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoidmvle.l L = x Fin a x , b x if x = 0 k x vol a k b k
hsphoidmvle.x φ X Fin
hsphoidmvle.z φ Z X Y
hsphoidmvle.y X = Y Z
hsphoidmvle.c φ C
hsphoidmvle.h H = x c X j X if j Y c j if c j x c j x
hsphoidmvle.a φ A : X
hsphoidmvle.b φ B : X
Assertion hsphoidmvle φ A L X H C B A L X B

Proof

Step Hyp Ref Expression
1 hsphoidmvle.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hsphoidmvle.x φ X Fin
3 hsphoidmvle.z φ Z X Y
4 hsphoidmvle.y X = Y Z
5 hsphoidmvle.c φ C
6 hsphoidmvle.h H = x c X j X if j Y c j if c j x c j x
7 hsphoidmvle.a φ A : X
8 hsphoidmvle.b φ B : X
9 3 eldifad φ Z X
10 7 9 ffvelrnd φ A Z
11 8 9 ffvelrnd φ B Z
12 11 5 ifcld φ if B Z C B Z C
13 volicore A Z if B Z C B Z C vol A Z if B Z C B Z C
14 10 12 13 syl2anc φ vol A Z if B Z C B Z C
15 volicore A Z B Z vol A Z B Z
16 10 11 15 syl2anc φ vol A Z B Z
17 difssd φ X Z X
18 ssfi X Fin X Z X X Z Fin
19 2 17 18 syl2anc φ X Z Fin
20 eldifi k X Z k X
21 20 adantl φ k X Z k X
22 7 ffvelrnda φ k X A k
23 8 ffvelrnda φ k X B k
24 volicore A k B k vol A k B k
25 22 23 24 syl2anc φ k X vol A k B k
26 21 25 syldan φ k X Z vol A k B k
27 19 26 fprodrecl φ k X Z vol A k B k
28 nfv k φ
29 21 22 syldan φ k X Z A k
30 21 23 syldan φ k X Z B k
31 30 rexrd φ k X Z B k *
32 icombl A k B k * A k B k dom vol
33 29 31 32 syl2anc φ k X Z A k B k dom vol
34 volge0 A k B k dom vol 0 vol A k B k
35 33 34 syl φ k X Z 0 vol A k B k
36 28 19 26 35 fprodge0 φ 0 k X Z vol A k B k
37 12 rexrd φ if B Z C B Z C *
38 icombl A Z if B Z C B Z C * A Z if B Z C B Z C dom vol
39 10 37 38 syl2anc φ A Z if B Z C B Z C dom vol
40 11 rexrd φ B Z *
41 icombl A Z B Z * A Z B Z dom vol
42 10 40 41 syl2anc φ A Z B Z dom vol
43 10 rexrd φ A Z *
44 10 leidd φ A Z A Z
45 min1 B Z C if B Z C B Z C B Z
46 11 5 45 syl2anc φ if B Z C B Z C B Z
47 icossico A Z * B Z * A Z A Z if B Z C B Z C B Z A Z if B Z C B Z C A Z B Z
48 43 40 44 46 47 syl22anc φ A Z if B Z C B Z C A Z B Z
49 volss A Z if B Z C B Z C dom vol A Z B Z dom vol A Z if B Z C B Z C A Z B Z vol A Z if B Z C B Z C vol A Z B Z
50 39 42 48 49 syl3anc φ vol A Z if B Z C B Z C vol A Z B Z
51 14 16 27 36 50 lemul1ad φ vol A Z if B Z C B Z C k X Z vol A k B k vol A Z B Z k X Z vol A k B k
52 9 ne0d φ X
53 6 5 2 8 hsphoif φ H C B : X
54 1 2 52 7 53 hoidmvn0val φ A L X H C B = k X vol A k H C B k
55 53 ffvelrnda φ k X H C B k
56 volicore A k H C B k vol A k H C B k
57 22 55 56 syl2anc φ k X vol A k H C B k
58 57 recnd φ k X vol A k H C B k
59 fveq2 k = Z A k = A Z
60 fveq2 k = Z H C B k = H C B Z
61 59 60 oveq12d k = Z A k H C B k = A Z H C B Z
62 61 fveq2d k = Z vol A k H C B k = vol A Z H C B Z
63 62 adantl φ k = Z vol A k H C B k = vol A Z H C B Z
64 6 5 2 8 9 hsphoival φ H C B Z = if Z Y B Z if B Z C B Z C
65 3 eldifbd φ ¬ Z Y
66 65 iffalsed φ if Z Y B Z if B Z C B Z C = if B Z C B Z C
67 64 66 eqtrd φ H C B Z = if B Z C B Z C
68 67 oveq2d φ A Z H C B Z = A Z if B Z C B Z C
69 68 fveq2d φ vol A Z H C B Z = vol A Z if B Z C B Z C
70 69 adantr φ k = Z vol A Z H C B Z = vol A Z if B Z C B Z C
71 63 70 eqtrd φ k = Z vol A k H C B k = vol A Z if B Z C B Z C
72 2 58 9 71 fprodsplit1 φ k X vol A k H C B k = vol A Z if B Z C B Z C k X Z vol A k H C B k
73 5 adantr φ k X Z C
74 2 adantr φ k X Z X Fin
75 8 adantr φ k X Z B : X
76 6 73 74 75 21 hsphoival φ k X Z H C B k = if k Y B k if B k C B k C
77 20 4 eleqtrdi k X Z k Y Z
78 eldifn k X Z ¬ k Z
79 elunnel2 k Y Z ¬ k Z k Y
80 77 78 79 syl2anc k X Z k Y
81 80 adantl φ k X Z k Y
82 81 iftrued φ k X Z if k Y B k if B k C B k C = B k
83 76 82 eqtrd φ k X Z H C B k = B k
84 83 oveq2d φ k X Z A k H C B k = A k B k
85 84 fveq2d φ k X Z vol A k H C B k = vol A k B k
86 85 prodeq2dv φ k X Z vol A k H C B k = k X Z vol A k B k
87 86 oveq2d φ vol A Z if B Z C B Z C k X Z vol A k H C B k = vol A Z if B Z C B Z C k X Z vol A k B k
88 54 72 87 3eqtrd φ A L X H C B = vol A Z if B Z C B Z C k X Z vol A k B k
89 1 7 8 2 hoidmvval φ A L X B = if X = 0 k X vol A k B k
90 52 neneqd φ ¬ X =
91 90 iffalsed φ if X = 0 k X vol A k B k = k X vol A k B k
92 25 recnd φ k X vol A k B k
93 fveq2 k = Z B k = B Z
94 59 93 oveq12d k = Z A k B k = A Z B Z
95 94 fveq2d k = Z vol A k B k = vol A Z B Z
96 95 adantl φ k = Z vol A k B k = vol A Z B Z
97 2 92 9 96 fprodsplit1 φ k X vol A k B k = vol A Z B Z k X Z vol A k B k
98 89 91 97 3eqtrd φ A L X B = vol A Z B Z k X Z vol A k B k
99 88 98 breq12d φ A L X H C B A L X B vol A Z if B Z C B Z C k X Z vol A k B k vol A Z B Z k X Z vol A k B k
100 51 99 mpbird φ A L X H C B A L X B