Metamath Proof Explorer


Theorem volss

Description: The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017)

Ref Expression
Assertion volss AdomvolBdomvolABvolAvolB

Proof

Step Hyp Ref Expression
1 simp3 AdomvolBdomvolABAB
2 mblss BdomvolB
3 2 3ad2ant2 AdomvolBdomvolABB
4 ovolss ABBvol*Avol*B
5 1 3 4 syl2anc AdomvolBdomvolABvol*Avol*B
6 mblvol AdomvolvolA=vol*A
7 6 3ad2ant1 AdomvolBdomvolABvolA=vol*A
8 mblvol BdomvolvolB=vol*B
9 8 3ad2ant2 AdomvolBdomvolABvolB=vol*B
10 5 7 9 3brtr4d AdomvolBdomvolABvolAvolB