Metamath Proof Explorer


Theorem hsphoival

Description: H is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoival.h H=xaXjXifjYajifajxajx
hsphoival.a φA
hsphoival.x φXV
hsphoival.b φB:X
hsphoival.k φKX
Assertion hsphoival φHABK=ifKYBKifBKABKA

Proof

Step Hyp Ref Expression
1 hsphoival.h H=xaXjXifjYajifajxajx
2 hsphoival.a φA
3 hsphoival.x φXV
4 hsphoival.b φB:X
5 hsphoival.k φKX
6 breq2 x=AajxajA
7 id x=Ax=A
8 6 7 ifbieq2d x=Aifajxajx=ifajAajA
9 8 ifeq2d x=AifjYajifajxajx=ifjYajifajAajA
10 9 mpteq2dv x=AjXifjYajifajxajx=jXifjYajifajAajA
11 10 mpteq2dv x=AaXjXifjYajifajxajx=aXjXifjYajifajAajA
12 ovex XV
13 12 mptex aXjXifjYajifajAajAV
14 13 a1i φaXjXifjYajifajAajAV
15 1 11 2 14 fvmptd3 φHA=aXjXifjYajifajAajA
16 fveq1 a=Baj=Bj
17 16 breq1d a=BajABjA
18 17 16 ifbieq1d a=BifajAajA=ifBjABjA
19 16 18 ifeq12d a=BifjYajifajAajA=ifjYBjifBjABjA
20 19 mpteq2dv a=BjXifjYajifajAajA=jXifjYBjifBjABjA
21 20 adantl φa=BjXifjYajifajAajA=jXifjYBjifBjABjA
22 reex V
23 22 a1i φV
24 23 3 jca φVXV
25 elmapg VXVBXB:X
26 24 25 syl φBXB:X
27 4 26 mpbird φBX
28 mptexg XVjXifjYBjifBjABjAV
29 3 28 syl φjXifjYBjifBjABjAV
30 15 21 27 29 fvmptd φHAB=jXifjYBjifBjABjA
31 eleq1 j=KjYKY
32 fveq2 j=KBj=BK
33 32 breq1d j=KBjABKA
34 33 32 ifbieq1d j=KifBjABjA=ifBKABKA
35 31 32 34 ifbieq12d j=KifjYBjifBjABjA=ifKYBKifBKABKA
36 35 adantl φj=KifjYBjifBjABjA=ifKYBKifBKABKA
37 4 5 ffvelcdmd φBK
38 37 2 ifcld φifBKABKA
39 37 38 ifexd φifKYBKifBKABKAV
40 30 36 5 39 fvmptd φHABK=ifKYBKifBKABKA