Metamath Proof Explorer


Theorem hsphoival

Description: H is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoival.h H = x a X j X if j Y a j if a j x a j x
hsphoival.a φ A
hsphoival.x φ X V
hsphoival.b φ B : X
hsphoival.k φ K X
Assertion hsphoival φ H A B K = if K Y B K if B K A B K A

Proof

Step Hyp Ref Expression
1 hsphoival.h H = x a X j X if j Y a j if a j x a j x
2 hsphoival.a φ A
3 hsphoival.x φ X V
4 hsphoival.b φ B : X
5 hsphoival.k φ K X
6 breq2 x = A a j x a j A
7 id x = A x = A
8 6 7 ifbieq2d x = A if a j x a j x = if a j A a j A
9 8 ifeq2d x = A if j Y a j if a j x a j x = if j Y a j if a j A a j A
10 9 mpteq2dv x = A j X if j Y a j if a j x a j x = j X if j Y a j if a j A a j A
11 10 mpteq2dv x = A a X j X if j Y a j if a j x a j x = a X j X if j Y a j if a j A a j A
12 ovex X V
13 12 mptex a X j X if j Y a j if a j A a j A V
14 13 a1i φ a X j X if j Y a j if a j A a j A V
15 1 11 2 14 fvmptd3 φ H A = a X j X if j Y a j if a j A a j A
16 fveq1 a = B a j = B j
17 16 breq1d a = B a j A B j A
18 17 16 ifbieq1d a = B if a j A a j A = if B j A B j A
19 16 18 ifeq12d a = B if j Y a j if a j A a j A = if j Y B j if B j A B j A
20 19 mpteq2dv a = B j X if j Y a j if a j A a j A = j X if j Y B j if B j A B j A
21 20 adantl φ a = B j X if j Y a j if a j A a j A = j X if j Y B j if B j A B j A
22 reex V
23 22 a1i φ V
24 23 3 jca φ V X V
25 elmapg V X V B X B : X
26 24 25 syl φ B X B : X
27 4 26 mpbird φ B X
28 mptexg X V j X if j Y B j if B j A B j A V
29 3 28 syl φ j X if j Y B j if B j A B j A V
30 15 21 27 29 fvmptd φ H A B = j X if j Y B j if B j A B j A
31 eleq1 j = K j Y K Y
32 fveq2 j = K B j = B K
33 32 breq1d j = K B j A B K A
34 33 32 ifbieq1d j = K if B j A B j A = if B K A B K A
35 31 32 34 ifbieq12d j = K if j Y B j if B j A B j A = if K Y B K if B K A B K A
36 35 adantl φ j = K if j Y B j if B j A B j A = if K Y B K if B K A B K A
37 4 5 ffvelrnd φ B K
38 37 2 ifcld φ if B K A B K A
39 37 38 ifexd φ if K Y B K if B K A B K A V
40 30 36 5 39 fvmptd φ H A B K = if K Y B K if B K A B K A