Step |
Hyp |
Ref |
Expression |
1 |
|
hsphoival.h |
⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑎 ‘ 𝑗 ) , 𝑥 ) ) ) ) ) |
2 |
|
hsphoival.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
hsphoival.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
hsphoival.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
5 |
|
hsphoival.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
6 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 ) ) |
7 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
8 |
6 7
|
ifbieq2d |
⊢ ( 𝑥 = 𝐴 → if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑎 ‘ 𝑗 ) , 𝑥 ) = if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) |
9 |
8
|
ifeq2d |
⊢ ( 𝑥 = 𝐴 → if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑎 ‘ 𝑗 ) , 𝑥 ) ) = if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑎 ‘ 𝑗 ) , 𝑥 ) ) ) = ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) ) |
11 |
10
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝑥 , ( 𝑎 ‘ 𝑗 ) , 𝑥 ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) ) ) |
12 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
13 |
12
|
mptex |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) ) ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) ) ∈ V ) |
15 |
1 11 2 14
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) ↦ ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) ) ) |
16 |
|
fveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑗 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 ↔ ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 ) ) |
18 |
17 16
|
ifbieq1d |
⊢ ( 𝑎 = 𝐵 → if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) = if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) |
19 |
16 18
|
ifeq12d |
⊢ ( 𝑎 = 𝐵 → if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) = if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑎 = 𝐵 → ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) = ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐵 ) → ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝑎 ‘ 𝑗 ) , if ( ( 𝑎 ‘ 𝑗 ) ≤ 𝐴 , ( 𝑎 ‘ 𝑗 ) , 𝐴 ) ) ) = ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) ) |
22 |
|
reex |
⊢ ℝ ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
24 |
23 3
|
jca |
⊢ ( 𝜑 → ( ℝ ∈ V ∧ 𝑋 ∈ 𝑉 ) ) |
25 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
27 |
4 26
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( ℝ ↑m 𝑋 ) ) |
28 |
|
mptexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) ∈ V ) |
29 |
3 28
|
syl |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) ∈ V ) |
30 |
15 21 27 29
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝑗 ∈ 𝑋 ↦ if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) ) ) |
31 |
|
eleq1 |
⊢ ( 𝑗 = 𝐾 → ( 𝑗 ∈ 𝑌 ↔ 𝐾 ∈ 𝑌 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝐾 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 ↔ ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 ) ) |
34 |
33 32
|
ifbieq1d |
⊢ ( 𝑗 = 𝐾 → if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) = if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ) |
35 |
31 32 34
|
ifbieq12d |
⊢ ( 𝑗 = 𝐾 → if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) = if ( 𝐾 ∈ 𝑌 , ( 𝐵 ‘ 𝐾 ) , if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝐾 ) → if ( 𝑗 ∈ 𝑌 , ( 𝐵 ‘ 𝑗 ) , if ( ( 𝐵 ‘ 𝑗 ) ≤ 𝐴 , ( 𝐵 ‘ 𝑗 ) , 𝐴 ) ) = if ( 𝐾 ∈ 𝑌 , ( 𝐵 ‘ 𝐾 ) , if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ) ) |
37 |
4 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐾 ) ∈ ℝ ) |
38 |
37 2
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ∈ ℝ ) |
39 |
37 38
|
ifexd |
⊢ ( 𝜑 → if ( 𝐾 ∈ 𝑌 , ( 𝐵 ‘ 𝐾 ) , if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ) ∈ V ) |
40 |
30 36 5 39
|
fvmptd |
⊢ ( 𝜑 → ( ( ( 𝐻 ‘ 𝐴 ) ‘ 𝐵 ) ‘ 𝐾 ) = if ( 𝐾 ∈ 𝑌 , ( 𝐵 ‘ 𝐾 ) , if ( ( 𝐵 ‘ 𝐾 ) ≤ 𝐴 , ( 𝐵 ‘ 𝐾 ) , 𝐴 ) ) ) |