| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hsphoival.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑎 ‘ 𝑗 ) ,  𝑥 ) ) ) ) ) | 
						
							| 2 |  | hsphoival.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | hsphoival.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | hsphoival.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 5 |  | hsphoival.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑋 ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥  ↔  ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 8 | 6 7 | ifbieq2d | ⊢ ( 𝑥  =  𝐴  →  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑎 ‘ 𝑗 ) ,  𝑥 )  =  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) | 
						
							| 9 | 8 | ifeq2d | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑎 ‘ 𝑗 ) ,  𝑥 ) )  =  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) | 
						
							| 10 | 9 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑎 ‘ 𝑗 ) ,  𝑥 ) ) )  =  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) ) | 
						
							| 11 | 10 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝑥 ,  ( 𝑎 ‘ 𝑗 ) ,  𝑥 ) ) ) )  =  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) | 
						
							| 12 |  | ovex | ⊢ ( ℝ  ↑m  𝑋 )  ∈  V | 
						
							| 13 | 12 | mptex | ⊢ ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) )  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) )  ∈  V ) | 
						
							| 15 | 1 11 2 14 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐴 )  =  ( 𝑎  ∈  ( ℝ  ↑m  𝑋 )  ↦  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) ) ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑎  =  𝐵  →  ( 𝑎 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( 𝑎  =  𝐵  →  ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴  ↔  ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ) ) | 
						
							| 18 | 17 16 | ifbieq1d | ⊢ ( 𝑎  =  𝐵  →  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 )  =  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) | 
						
							| 19 | 16 18 | ifeq12d | ⊢ ( 𝑎  =  𝐵  →  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) )  =  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) ) | 
						
							| 20 | 19 | mpteq2dv | ⊢ ( 𝑎  =  𝐵  →  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) )  =  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐵 )  →  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝑎 ‘ 𝑗 ) ,  if ( ( 𝑎 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝑎 ‘ 𝑗 ) ,  𝐴 ) ) )  =  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) ) ) | 
						
							| 22 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 24 | 23 3 | jca | ⊢ ( 𝜑  →  ( ℝ  ∈  V  ∧  𝑋  ∈  𝑉 ) ) | 
						
							| 25 |  | elmapg | ⊢ ( ( ℝ  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ( 𝐵  ∈  ( ℝ  ↑m  𝑋 )  ↔  𝐵 : 𝑋 ⟶ ℝ ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( ℝ  ↑m  𝑋 )  ↔  𝐵 : 𝑋 ⟶ ℝ ) ) | 
						
							| 27 | 4 26 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 28 |  | mptexg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) )  ∈  V ) | 
						
							| 29 | 3 28 | syl | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) )  ∈  V ) | 
						
							| 30 | 15 21 27 29 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐴 ) ‘ 𝐵 )  =  ( 𝑗  ∈  𝑋  ↦  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) ) ) ) | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑗  =  𝐾  →  ( 𝑗  ∈  𝑌  ↔  𝐾  ∈  𝑌 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑗  =  𝐾  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝐾 ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( 𝑗  =  𝐾  →  ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴  ↔  ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ) ) | 
						
							| 34 | 33 32 | ifbieq1d | ⊢ ( 𝑗  =  𝐾  →  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 )  =  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 ) ) | 
						
							| 35 | 31 32 34 | ifbieq12d | ⊢ ( 𝑗  =  𝐾  →  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) )  =  if ( 𝐾  ∈  𝑌 ,  ( 𝐵 ‘ 𝐾 ) ,  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 ) ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  =  𝐾 )  →  if ( 𝑗  ∈  𝑌 ,  ( 𝐵 ‘ 𝑗 ) ,  if ( ( 𝐵 ‘ 𝑗 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝑗 ) ,  𝐴 ) )  =  if ( 𝐾  ∈  𝑌 ,  ( 𝐵 ‘ 𝐾 ) ,  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 ) ) ) | 
						
							| 37 | 4 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 38 | 37 2 | ifcld | ⊢ ( 𝜑  →  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 )  ∈  ℝ ) | 
						
							| 39 | 37 38 | ifexd | ⊢ ( 𝜑  →  if ( 𝐾  ∈  𝑌 ,  ( 𝐵 ‘ 𝐾 ) ,  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 ) )  ∈  V ) | 
						
							| 40 | 30 36 5 39 | fvmptd | ⊢ ( 𝜑  →  ( ( ( 𝐻 ‘ 𝐴 ) ‘ 𝐵 ) ‘ 𝐾 )  =  if ( 𝐾  ∈  𝑌 ,  ( 𝐵 ‘ 𝐾 ) ,  if ( ( 𝐵 ‘ 𝐾 )  ≤  𝐴 ,  ( 𝐵 ‘ 𝐾 ) ,  𝐴 ) ) ) |