Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodcl3.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
hoiprodcl3.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoiprodcl3.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
4 |
|
hoiprodcl3.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
5 |
|
0xr |
⊢ 0 ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
7 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
8 |
7
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
9 |
|
volico |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
10 |
3 4 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
11 |
4 3
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
12 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ∈ ℝ ) |
13 |
11 12
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ∈ ℝ ) |
14 |
10 13
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
15 |
1 2 14
|
fprodreclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
16 |
15
|
rexrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ* ) |
17 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
18 |
|
icombl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
19 |
3 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
20 |
|
volge0 |
⊢ ( ( 𝐴 [,) 𝐵 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
22 |
1 2 14 21
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
23 |
15
|
ltpnfd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) < +∞ ) |
24 |
6 8 16 22 23
|
elicod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) ) |