Metamath Proof Explorer


Theorem hoiprodcl3

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoiprodcl3.k 𝑘 𝜑
hoiprodcl3.x ( 𝜑𝑋 ∈ Fin )
hoiprodcl3.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
hoiprodcl3.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
Assertion hoiprodcl3 ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 hoiprodcl3.k 𝑘 𝜑
2 hoiprodcl3.x ( 𝜑𝑋 ∈ Fin )
3 hoiprodcl3.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
4 hoiprodcl3.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
5 0xr 0 ∈ ℝ*
6 5 a1i ( 𝜑 → 0 ∈ ℝ* )
7 pnfxr +∞ ∈ ℝ*
8 7 a1i ( 𝜑 → +∞ ∈ ℝ* )
9 volico ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) )
10 3 4 9 syl2anc ( ( 𝜑𝑘𝑋 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) )
11 4 3 resubcld ( ( 𝜑𝑘𝑋 ) → ( 𝐵𝐴 ) ∈ ℝ )
12 0red ( ( 𝜑𝑘𝑋 ) → 0 ∈ ℝ )
13 11 12 ifcld ( ( 𝜑𝑘𝑋 ) → if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) ∈ ℝ )
14 10 13 eqeltrd ( ( 𝜑𝑘𝑋 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ )
15 1 2 14 fprodreclf ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ )
16 15 rexrd ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ* )
17 4 rexrd ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ* )
18 icombl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol )
19 3 17 18 syl2anc ( ( 𝜑𝑘𝑋 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol )
20 volge0 ( ( 𝐴 [,) 𝐵 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) )
21 19 20 syl ( ( 𝜑𝑘𝑋 ) → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) )
22 1 2 14 21 fprodge0 ( 𝜑 → 0 ≤ ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) )
23 15 ltpnfd ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) < +∞ )
24 6 8 16 22 23 elicod ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) )