| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodcl3.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | hoiprodcl3.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoiprodcl3.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | hoiprodcl3.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 7 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 9 |  | volico | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 10 | 3 4 9 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 11 | 4 3 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 12 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  0  ∈  ℝ ) | 
						
							| 13 | 11 12 | ifcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  ∈  ℝ ) | 
						
							| 14 | 10 13 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 15 | 1 2 14 | fprodreclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 16 | 15 | rexrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ* ) | 
						
							| 17 | 4 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 18 |  | icombl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 19 | 3 17 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 20 |  | volge0 | ⊢ ( ( 𝐴 [,) 𝐵 )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 22 | 1 2 14 21 | fprodge0 | ⊢ ( 𝜑  →  0  ≤  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 23 | 15 | ltpnfd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) )  <  +∞ ) | 
						
							| 24 | 6 8 16 22 23 | elicod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ( 0 [,) +∞ ) ) |