| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodcl3.k |  |-  F/ k ph | 
						
							| 2 |  | hoiprodcl3.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoiprodcl3.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 4 |  | hoiprodcl3.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 5 |  | 0xr |  |-  0 e. RR* | 
						
							| 6 | 5 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 7 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 8 | 7 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 9 |  | volico |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 10 | 3 4 9 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 11 | 4 3 | resubcld |  |-  ( ( ph /\ k e. X ) -> ( B - A ) e. RR ) | 
						
							| 12 |  | 0red |  |-  ( ( ph /\ k e. X ) -> 0 e. RR ) | 
						
							| 13 | 11 12 | ifcld |  |-  ( ( ph /\ k e. X ) -> if ( A < B , ( B - A ) , 0 ) e. RR ) | 
						
							| 14 | 10 13 | eqeltrd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) e. RR ) | 
						
							| 15 | 1 2 14 | fprodreclf |  |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR ) | 
						
							| 16 | 15 | rexrd |  |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR* ) | 
						
							| 17 | 4 | rexrd |  |-  ( ( ph /\ k e. X ) -> B e. RR* ) | 
						
							| 18 |  | icombl |  |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) | 
						
							| 19 | 3 17 18 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( A [,) B ) e. dom vol ) | 
						
							| 20 |  | volge0 |  |-  ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 22 | 1 2 14 21 | fprodge0 |  |-  ( ph -> 0 <_ prod_ k e. X ( vol ` ( A [,) B ) ) ) | 
						
							| 23 | 15 | ltpnfd |  |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) < +oo ) | 
						
							| 24 | 6 8 16 22 23 | elicod |  |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) ) |