| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiprodcl3.k |
|- F/ k ph |
| 2 |
|
hoiprodcl3.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
hoiprodcl3.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
| 4 |
|
hoiprodcl3.b |
|- ( ( ph /\ k e. X ) -> B e. RR ) |
| 5 |
|
0xr |
|- 0 e. RR* |
| 6 |
5
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 7 |
|
pnfxr |
|- +oo e. RR* |
| 8 |
7
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 9 |
|
volico |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 10 |
3 4 9
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 11 |
4 3
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( B - A ) e. RR ) |
| 12 |
|
0red |
|- ( ( ph /\ k e. X ) -> 0 e. RR ) |
| 13 |
11 12
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( A < B , ( B - A ) , 0 ) e. RR ) |
| 14 |
10 13
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) e. RR ) |
| 15 |
1 2 14
|
fprodreclf |
|- ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR ) |
| 16 |
15
|
rexrd |
|- ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR* ) |
| 17 |
4
|
rexrd |
|- ( ( ph /\ k e. X ) -> B e. RR* ) |
| 18 |
|
icombl |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |
| 19 |
3 17 18
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( A [,) B ) e. dom vol ) |
| 20 |
|
volge0 |
|- ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) ) |
| 21 |
19 20
|
syl |
|- ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( A [,) B ) ) ) |
| 22 |
1 2 14 21
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( A [,) B ) ) ) |
| 23 |
15
|
ltpnfd |
|- ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) < +oo ) |
| 24 |
6 8 16 22 23
|
elicod |
|- ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) ) |