Metamath Proof Explorer


Theorem hoiprodcl3

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoiprodcl3.k
|- F/ k ph
hoiprodcl3.x
|- ( ph -> X e. Fin )
hoiprodcl3.a
|- ( ( ph /\ k e. X ) -> A e. RR )
hoiprodcl3.b
|- ( ( ph /\ k e. X ) -> B e. RR )
Assertion hoiprodcl3
|- ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 hoiprodcl3.k
 |-  F/ k ph
2 hoiprodcl3.x
 |-  ( ph -> X e. Fin )
3 hoiprodcl3.a
 |-  ( ( ph /\ k e. X ) -> A e. RR )
4 hoiprodcl3.b
 |-  ( ( ph /\ k e. X ) -> B e. RR )
5 0xr
 |-  0 e. RR*
6 5 a1i
 |-  ( ph -> 0 e. RR* )
7 pnfxr
 |-  +oo e. RR*
8 7 a1i
 |-  ( ph -> +oo e. RR* )
9 volico
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) )
10 3 4 9 syl2anc
 |-  ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) )
11 4 3 resubcld
 |-  ( ( ph /\ k e. X ) -> ( B - A ) e. RR )
12 0red
 |-  ( ( ph /\ k e. X ) -> 0 e. RR )
13 11 12 ifcld
 |-  ( ( ph /\ k e. X ) -> if ( A < B , ( B - A ) , 0 ) e. RR )
14 10 13 eqeltrd
 |-  ( ( ph /\ k e. X ) -> ( vol ` ( A [,) B ) ) e. RR )
15 1 2 14 fprodreclf
 |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR )
16 15 rexrd
 |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. RR* )
17 4 rexrd
 |-  ( ( ph /\ k e. X ) -> B e. RR* )
18 icombl
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol )
19 3 17 18 syl2anc
 |-  ( ( ph /\ k e. X ) -> ( A [,) B ) e. dom vol )
20 volge0
 |-  ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) )
21 19 20 syl
 |-  ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( A [,) B ) ) )
22 1 2 14 21 fprodge0
 |-  ( ph -> 0 <_ prod_ k e. X ( vol ` ( A [,) B ) ) )
23 15 ltpnfd
 |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) < +oo )
24 6 8 16 22 23 elicod
 |-  ( ph -> prod_ k e. X ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) )