Metamath Proof Explorer


Theorem hoiprodcl3

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoiprodcl3.k kφ
hoiprodcl3.x φXFin
hoiprodcl3.a φkXA
hoiprodcl3.b φkXB
Assertion hoiprodcl3 φkXvolAB0+∞

Proof

Step Hyp Ref Expression
1 hoiprodcl3.k kφ
2 hoiprodcl3.x φXFin
3 hoiprodcl3.a φkXA
4 hoiprodcl3.b φkXB
5 0xr 0*
6 5 a1i φ0*
7 pnfxr +∞*
8 7 a1i φ+∞*
9 volico ABvolAB=ifA<BBA0
10 3 4 9 syl2anc φkXvolAB=ifA<BBA0
11 4 3 resubcld φkXBA
12 0red φkX0
13 11 12 ifcld φkXifA<BBA0
14 10 13 eqeltrd φkXvolAB
15 1 2 14 fprodreclf φkXvolAB
16 15 rexrd φkXvolAB*
17 4 rexrd φkXB*
18 icombl AB*ABdomvol
19 3 17 18 syl2anc φkXABdomvol
20 volge0 ABdomvol0volAB
21 19 20 syl φkX0volAB
22 1 2 14 21 fprodge0 φ0kXvolAB
23 15 ltpnfd φkXvolAB<+∞
24 6 8 16 22 23 elicod φkXvolAB0+∞