Metamath Proof Explorer


Theorem hoiprodcl3

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoiprodcl3.k k φ
hoiprodcl3.x φ X Fin
hoiprodcl3.a φ k X A
hoiprodcl3.b φ k X B
Assertion hoiprodcl3 φ k X vol A B 0 +∞

Proof

Step Hyp Ref Expression
1 hoiprodcl3.k k φ
2 hoiprodcl3.x φ X Fin
3 hoiprodcl3.a φ k X A
4 hoiprodcl3.b φ k X B
5 0xr 0 *
6 5 a1i φ 0 *
7 pnfxr +∞ *
8 7 a1i φ +∞ *
9 volico A B vol A B = if A < B B A 0
10 3 4 9 syl2anc φ k X vol A B = if A < B B A 0
11 4 3 resubcld φ k X B A
12 0red φ k X 0
13 11 12 ifcld φ k X if A < B B A 0
14 10 13 eqeltrd φ k X vol A B
15 1 2 14 fprodreclf φ k X vol A B
16 15 rexrd φ k X vol A B *
17 4 rexrd φ k X B *
18 icombl A B * A B dom vol
19 3 17 18 syl2anc φ k X A B dom vol
20 volge0 A B dom vol 0 vol A B
21 19 20 syl φ k X 0 vol A B
22 1 2 14 21 fprodge0 φ 0 k X vol A B
23 15 ltpnfd φ k X vol A B < +∞
24 6 8 16 22 23 elicod φ k X vol A B 0 +∞