Metamath Proof Explorer


Theorem icombl

Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icombl
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol )

Proof

Step Hyp Ref Expression
1 uncom
 |-  ( ( B [,) +oo ) u. ( A [,) B ) ) = ( ( A [,) B ) u. ( B [,) +oo ) )
2 rexr
 |-  ( A e. RR -> A e. RR* )
3 2 ad2antrr
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A e. RR* )
4 simplr
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B e. RR* )
5 pnfxr
 |-  +oo e. RR*
6 5 a1i
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> +oo e. RR* )
7 xrltle
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) )
8 2 7 sylan
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A < B -> A <_ B ) )
9 8 imp
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A <_ B )
10 pnfge
 |-  ( B e. RR* -> B <_ +oo )
11 4 10 syl
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B <_ +oo )
12 icoun
 |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A <_ B /\ B <_ +oo ) ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) )
13 3 4 6 9 11 12 syl32anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) )
14 1 13 eqtrid
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) )
15 ssun1
 |-  ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( A [,) B ) )
16 15 14 sseqtrid
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) )
17 incom
 |-  ( ( B [,) +oo ) i^i ( A [,) B ) ) = ( ( A [,) B ) i^i ( B [,) +oo ) )
18 icodisj
 |-  ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) )
19 5 18 mp3an3
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) )
20 3 4 19 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) )
21 17 20 eqtrid
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) )
22 uneqdifeq
 |-  ( ( ( B [,) +oo ) C_ ( A [,) +oo ) /\ ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) )
23 16 21 22 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) )
24 14 23 mpbid
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) )
25 icombl1
 |-  ( A e. RR -> ( A [,) +oo ) e. dom vol )
26 25 ad2antrr
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) +oo ) e. dom vol )
27 xrleloe
 |-  ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) )
28 4 6 27 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) )
29 11 28 mpbid
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) )
30 simpr
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A < B )
31 xrre2
 |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR )
32 31 expr
 |-  ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) )
33 3 4 6 30 32 syl31anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) )
34 33 orim1d
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) )
35 29 34 mpd
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) )
36 icombl1
 |-  ( B e. RR -> ( B [,) +oo ) e. dom vol )
37 oveq1
 |-  ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) )
38 pnfge
 |-  ( +oo e. RR* -> +oo <_ +oo )
39 5 38 ax-mp
 |-  +oo <_ +oo
40 ico0
 |-  ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) )
41 5 5 40 mp2an
 |-  ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo )
42 39 41 mpbir
 |-  ( +oo [,) +oo ) = (/)
43 37 42 eqtrdi
 |-  ( B = +oo -> ( B [,) +oo ) = (/) )
44 0mbl
 |-  (/) e. dom vol
45 43 44 eqeltrdi
 |-  ( B = +oo -> ( B [,) +oo ) e. dom vol )
46 36 45 jaoi
 |-  ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol )
47 35 46 syl
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol )
48 difmbl
 |-  ( ( ( A [,) +oo ) e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol )
49 26 47 48 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol )
50 24 49 eqeltrrd
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) B ) e. dom vol )
51 ico0
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) )
52 2 51 sylan
 |-  ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) )
53 simpr
 |-  ( ( A e. RR /\ B e. RR* ) -> B e. RR* )
54 2 adantr
 |-  ( ( A e. RR /\ B e. RR* ) -> A e. RR* )
55 53 54 xrlenltd
 |-  ( ( A e. RR /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) )
56 52 55 bitrd
 |-  ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> -. A < B ) )
57 56 biimpar
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) = (/) )
58 57 44 eqeltrdi
 |-  ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) e. dom vol )
59 50 58 pm2.61dan
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol )