| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncom |
|- ( ( B [,) +oo ) u. ( A [,) B ) ) = ( ( A [,) B ) u. ( B [,) +oo ) ) |
| 2 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A e. RR* ) |
| 4 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B e. RR* ) |
| 5 |
|
pnfxr |
|- +oo e. RR* |
| 6 |
5
|
a1i |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) |
| 7 |
|
xrltle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
| 8 |
2 7
|
sylan |
|- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
| 9 |
8
|
imp |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A <_ B ) |
| 10 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 11 |
4 10
|
syl |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) |
| 12 |
|
icoun |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A <_ B /\ B <_ +oo ) ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
| 13 |
3 4 6 9 11 12
|
syl32anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
| 14 |
1 13
|
eqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) ) |
| 15 |
|
ssun1 |
|- ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( A [,) B ) ) |
| 16 |
15 14
|
sseqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
| 17 |
|
incom |
|- ( ( B [,) +oo ) i^i ( A [,) B ) ) = ( ( A [,) B ) i^i ( B [,) +oo ) ) |
| 18 |
|
icodisj |
|- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 19 |
5 18
|
mp3an3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 20 |
3 4 19
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 21 |
17 20
|
eqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) |
| 22 |
|
uneqdifeq |
|- ( ( ( B [,) +oo ) C_ ( A [,) +oo ) /\ ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
| 23 |
16 21 22
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
| 24 |
14 23
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) |
| 25 |
|
icombl1 |
|- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) +oo ) e. dom vol ) |
| 27 |
|
xrleloe |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 28 |
4 6 27
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 29 |
11 28
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) |
| 30 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A < B ) |
| 31 |
|
xrre2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
| 32 |
31
|
expr |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 33 |
3 4 6 30 32
|
syl31anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 34 |
33
|
orim1d |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) |
| 35 |
29 34
|
mpd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) |
| 36 |
|
icombl1 |
|- ( B e. RR -> ( B [,) +oo ) e. dom vol ) |
| 37 |
|
oveq1 |
|- ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) |
| 38 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
| 39 |
5 38
|
ax-mp |
|- +oo <_ +oo |
| 40 |
|
ico0 |
|- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) |
| 41 |
5 5 40
|
mp2an |
|- ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) |
| 42 |
39 41
|
mpbir |
|- ( +oo [,) +oo ) = (/) |
| 43 |
37 42
|
eqtrdi |
|- ( B = +oo -> ( B [,) +oo ) = (/) ) |
| 44 |
|
0mbl |
|- (/) e. dom vol |
| 45 |
43 44
|
eqeltrdi |
|- ( B = +oo -> ( B [,) +oo ) e. dom vol ) |
| 46 |
36 45
|
jaoi |
|- ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) |
| 47 |
35 46
|
syl |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) |
| 48 |
|
difmbl |
|- ( ( ( A [,) +oo ) e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
| 49 |
26 47 48
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
| 50 |
24 49
|
eqeltrrd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) B ) e. dom vol ) |
| 51 |
|
ico0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
| 52 |
2 51
|
sylan |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
| 53 |
|
simpr |
|- ( ( A e. RR /\ B e. RR* ) -> B e. RR* ) |
| 54 |
2
|
adantr |
|- ( ( A e. RR /\ B e. RR* ) -> A e. RR* ) |
| 55 |
53 54
|
xrlenltd |
|- ( ( A e. RR /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 56 |
52 55
|
bitrd |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> -. A < B ) ) |
| 57 |
56
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) = (/) ) |
| 58 |
57 44
|
eqeltrdi |
|- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) e. dom vol ) |
| 59 |
50 58
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |