Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( ( B [,) +oo ) u. ( A [,) B ) ) = ( ( A [,) B ) u. ( B [,) +oo ) ) |
2 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
3 |
2
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A e. RR* ) |
4 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B e. RR* ) |
5 |
|
pnfxr |
|- +oo e. RR* |
6 |
5
|
a1i |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) |
7 |
|
xrltle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
8 |
2 7
|
sylan |
|- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
9 |
8
|
imp |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A <_ B ) |
10 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
11 |
4 10
|
syl |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) |
12 |
|
icoun |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A <_ B /\ B <_ +oo ) ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
13 |
3 4 6 9 11 12
|
syl32anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
14 |
1 13
|
eqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) ) |
15 |
|
ssun1 |
|- ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( A [,) B ) ) |
16 |
15 14
|
sseqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
17 |
|
incom |
|- ( ( B [,) +oo ) i^i ( A [,) B ) ) = ( ( A [,) B ) i^i ( B [,) +oo ) ) |
18 |
|
icodisj |
|- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
19 |
5 18
|
mp3an3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
20 |
3 4 19
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
21 |
17 20
|
eqtrid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) |
22 |
|
uneqdifeq |
|- ( ( ( B [,) +oo ) C_ ( A [,) +oo ) /\ ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
23 |
16 21 22
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
24 |
14 23
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) |
25 |
|
icombl1 |
|- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |
26 |
25
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) +oo ) e. dom vol ) |
27 |
|
xrleloe |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
28 |
4 6 27
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
29 |
11 28
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) |
30 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A < B ) |
31 |
|
xrre2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
32 |
31
|
expr |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
33 |
3 4 6 30 32
|
syl31anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
34 |
33
|
orim1d |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) |
35 |
29 34
|
mpd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) |
36 |
|
icombl1 |
|- ( B e. RR -> ( B [,) +oo ) e. dom vol ) |
37 |
|
oveq1 |
|- ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) |
38 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
39 |
5 38
|
ax-mp |
|- +oo <_ +oo |
40 |
|
ico0 |
|- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) |
41 |
5 5 40
|
mp2an |
|- ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) |
42 |
39 41
|
mpbir |
|- ( +oo [,) +oo ) = (/) |
43 |
37 42
|
eqtrdi |
|- ( B = +oo -> ( B [,) +oo ) = (/) ) |
44 |
|
0mbl |
|- (/) e. dom vol |
45 |
43 44
|
eqeltrdi |
|- ( B = +oo -> ( B [,) +oo ) e. dom vol ) |
46 |
36 45
|
jaoi |
|- ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) |
47 |
35 46
|
syl |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) |
48 |
|
difmbl |
|- ( ( ( A [,) +oo ) e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
49 |
26 47 48
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
50 |
24 49
|
eqeltrrd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) B ) e. dom vol ) |
51 |
|
ico0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
52 |
2 51
|
sylan |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
53 |
|
simpr |
|- ( ( A e. RR /\ B e. RR* ) -> B e. RR* ) |
54 |
2
|
adantr |
|- ( ( A e. RR /\ B e. RR* ) -> A e. RR* ) |
55 |
53 54
|
xrlenltd |
|- ( ( A e. RR /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
56 |
52 55
|
bitrd |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> -. A < B ) ) |
57 |
56
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) = (/) ) |
58 |
57 44
|
eqeltrdi |
|- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) e. dom vol ) |
59 |
50 58
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |