| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) <-> ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
| 2 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
| 3 |
2
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
| 4 |
3
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) |
| 5 |
4
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) |
| 6 |
5
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> x < B ) |
| 7 |
|
elico1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
| 8 |
7
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
| 9 |
8
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x < C ) ) |
| 10 |
9
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B <_ x ) |
| 11 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B e. RR* ) |
| 12 |
9
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> x e. RR* ) |
| 13 |
11 12
|
xrlenltd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( B <_ x <-> -. x < B ) ) |
| 14 |
10 13
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> -. x < B ) |
| 15 |
14
|
adantrl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> -. x < B ) |
| 16 |
6 15
|
pm2.65da |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
| 17 |
16
|
pm2.21d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) -> x e. (/) ) ) |
| 18 |
1 17
|
biimtrid |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) -> x e. (/) ) ) |
| 19 |
18
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) ) |
| 20 |
|
ss0 |
|- ( ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |
| 21 |
19 20
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |