Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) |
2 |
|
iccid |
|- ( B e. RR* -> ( B [,] B ) = { B } ) |
3 |
1 2
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( B [,] B ) = { B } ) |
4 |
3
|
uneq2d |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( ( A (,) B ) u. { B } ) ) |
5 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) |
6 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) |
7 |
1
|
xrleidd |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B <_ B ) |
8 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
9 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
10 |
|
xrlenlt |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
11 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
12 |
|
simpl1 |
|- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w e. RR* ) |
13 |
|
simpl2 |
|- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> B e. RR* ) |
14 |
|
simprl |
|- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w < B ) |
15 |
12 13 14
|
xrltled |
|- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w <_ B ) |
16 |
15
|
ex |
|- ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) -> ( ( w < B /\ B <_ B ) -> w <_ B ) ) |
17 |
|
xrltletr |
|- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A < B /\ B <_ w ) -> A < w ) ) |
18 |
8 9 10 11 16 17
|
ixxun |
|- ( ( ( A e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( A < B /\ B <_ B ) ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) |
19 |
5 1 1 6 7 18
|
syl32anc |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) |
20 |
4 19
|
eqtr3d |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |