Metamath Proof Explorer


Theorem ioounsn

Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019)

Ref Expression
Assertion ioounsn A*B*A<BABB=AB

Proof

Step Hyp Ref Expression
1 simp2 A*B*A<BB*
2 iccid B*BB=B
3 1 2 syl A*B*A<BBB=B
4 3 uneq2d A*B*A<BABBB=ABB
5 simp1 A*B*A<BA*
6 simp3 A*B*A<BA<B
7 1 xrleidd A*B*A<BBB
8 df-ioo .=x*,y*z*|x<zz<y
9 df-icc .=x*,y*z*|xzzy
10 xrlenlt B*w*Bw¬w<B
11 df-ioc .=x*,y*z*|x<zzy
12 simpl1 w*B*B*w<BBBw*
13 simpl2 w*B*B*w<BBBB*
14 simprl w*B*B*w<BBBw<B
15 12 13 14 xrltled w*B*B*w<BBBwB
16 15 ex w*B*B*w<BBBwB
17 xrltletr A*B*w*A<BBwA<w
18 8 9 10 11 16 17 ixxun A*B*B*A<BBBABBB=AB
19 5 1 1 6 7 18 syl32anc A*B*A<BABBB=AB
20 4 19 eqtr3d A*B*A<BABB=AB