Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxun.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
3 |
|
ixxun.3 |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
4 |
|
ixxun.4 |
|- Q = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z U y ) } ) |
5 |
|
ixxun.5 |
|- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w S B /\ B X C ) -> w U C ) ) |
6 |
|
ixxun.6 |
|- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
7 |
|
elun |
|- ( w e. ( ( A O B ) u. ( B P C ) ) <-> ( w e. ( A O B ) \/ w e. ( B P C ) ) ) |
8 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> A e. RR* ) |
9 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> B e. RR* ) |
10 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
11 |
8 9 10
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
12 |
11
|
biimpa |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
13 |
12
|
simp1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
14 |
12
|
simp2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> A R w ) |
15 |
12
|
simp3d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w S B ) |
16 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> B X C ) |
17 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
18 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> C e. RR* ) |
19 |
18
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> C e. RR* ) |
20 |
13 17 19 5
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( ( w S B /\ B X C ) -> w U C ) ) |
21 |
15 16 20
|
mp2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w U C ) |
22 |
13 14 21
|
3jca |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
23 |
2
|
elixx1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
24 |
9 18 23
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ B T w /\ w U C ) ) |
26 |
25
|
simp1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> w e. RR* ) |
27 |
|
simplrl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A W B ) |
28 |
25
|
simp2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> B T w ) |
29 |
8
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A e. RR* ) |
30 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> B e. RR* ) |
31 |
29 30 26 6
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
32 |
27 28 31
|
mp2and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A R w ) |
33 |
25
|
simp3d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> w U C ) |
34 |
26 32 33
|
3jca |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
35 |
22 34
|
jaodan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. ( A O B ) \/ w e. ( B P C ) ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
36 |
4
|
elixx1 |
|- ( ( A e. RR* /\ C e. RR* ) -> ( w e. ( A Q C ) <-> ( w e. RR* /\ A R w /\ w U C ) ) ) |
37 |
8 18 36
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A Q C ) <-> ( w e. RR* /\ A R w /\ w U C ) ) ) |
38 |
37
|
biimpar |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. RR* /\ A R w /\ w U C ) ) -> w e. ( A Q C ) ) |
39 |
35 38
|
syldan |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. ( A O B ) \/ w e. ( B P C ) ) ) -> w e. ( A Q C ) ) |
40 |
|
exmid |
|- ( w S B \/ -. w S B ) |
41 |
37
|
biimpa |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
42 |
41
|
simp1d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> w e. RR* ) |
43 |
41
|
simp2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> A R w ) |
44 |
42 43
|
jca |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ A R w ) ) |
45 |
|
df-3an |
|- ( ( w e. RR* /\ A R w /\ w S B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) |
46 |
11 45
|
bitrdi |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A O B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) ) |
47 |
46
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) ) |
48 |
44 47
|
mpbirand |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) <-> w S B ) ) |
49 |
|
3anan12 |
|- ( ( w e. RR* /\ B T w /\ w U C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) |
50 |
24 49
|
bitrdi |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( B P C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
51 |
50
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( B P C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
52 |
41
|
simp3d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> w U C ) |
53 |
42 52
|
jca |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ w U C ) ) |
54 |
53
|
biantrud |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( B T w <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
55 |
9
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> B e. RR* ) |
56 |
55 42 3
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( B T w <-> -. w S B ) ) |
57 |
51 54 56
|
3bitr2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( B P C ) <-> -. w S B ) ) |
58 |
48 57
|
orbi12d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( ( w e. ( A O B ) \/ w e. ( B P C ) ) <-> ( w S B \/ -. w S B ) ) ) |
59 |
40 58
|
mpbiri |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) \/ w e. ( B P C ) ) ) |
60 |
39 59
|
impbida |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( ( w e. ( A O B ) \/ w e. ( B P C ) ) <-> w e. ( A Q C ) ) ) |
61 |
7 60
|
syl5bb |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( ( A O B ) u. ( B P C ) ) <-> w e. ( A Q C ) ) ) |
62 |
61
|
eqrdv |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( ( A O B ) u. ( B P C ) ) = ( A Q C ) ) |