Metamath Proof Explorer


Theorem icodisj

Description: Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icodisj A*B*C*ABBC=

Proof

Step Hyp Ref Expression
1 elin xABBCxABxBC
2 elico1 A*B*xABx*Axx<B
3 2 3adant3 A*B*C*xABx*Axx<B
4 3 biimpa A*B*C*xABx*Axx<B
5 4 simp3d A*B*C*xABx<B
6 5 adantrr A*B*C*xABxBCx<B
7 elico1 B*C*xBCx*Bxx<C
8 7 3adant1 A*B*C*xBCx*Bxx<C
9 8 biimpa A*B*C*xBCx*Bxx<C
10 9 simp2d A*B*C*xBCBx
11 simpl2 A*B*C*xBCB*
12 9 simp1d A*B*C*xBCx*
13 11 12 xrlenltd A*B*C*xBCBx¬x<B
14 10 13 mpbid A*B*C*xBC¬x<B
15 14 adantrl A*B*C*xABxBC¬x<B
16 6 15 pm2.65da A*B*C*¬xABxBC
17 16 pm2.21d A*B*C*xABxBCx
18 1 17 biimtrid A*B*C*xABBCx
19 18 ssrdv A*B*C*ABBC
20 ss0 ABBCABBC=
21 19 20 syl A*B*C*ABBC=