Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
⊢ ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) |
2 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → +∞ ∈ ℝ* ) |
7 |
|
xrltle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
8 |
2 7
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
10 |
|
pnfge |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) |
11 |
4 10
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ +∞ ) |
12 |
|
icoun |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
13 |
3 4 6 9 11 12
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
14 |
1 13
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ) |
15 |
|
ssun1 |
⊢ ( 𝐵 [,) +∞ ) ⊆ ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) |
16 |
15 14
|
sseqtrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
17 |
|
incom |
⊢ ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) |
18 |
|
icodisj |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
19 |
5 18
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
20 |
3 4 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
21 |
17 20
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ∅ ) |
22 |
|
uneqdifeq |
⊢ ( ( ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ∧ ( ( 𝐵 [,) +∞ ) ∩ ( 𝐴 [,) 𝐵 ) ) = ∅ ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ↔ ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) ) |
23 |
16 21 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( 𝐴 [,) 𝐵 ) ) = ( 𝐴 [,) +∞ ) ↔ ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) ) |
24 |
14 23
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) = ( 𝐴 [,) 𝐵 ) ) |
25 |
|
icombl1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ dom vol ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,) +∞ ) ∈ dom vol ) |
27 |
|
xrleloe |
⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
28 |
4 6 27
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
29 |
11 28
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) |
30 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
31 |
|
xrre2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) → 𝐵 ∈ ℝ ) |
32 |
31
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
33 |
3 4 6 30 32
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
34 |
33
|
orim1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) ) |
35 |
29 34
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
36 |
|
icombl1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
37 |
|
oveq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ( +∞ [,) +∞ ) ) |
38 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
39 |
5 38
|
ax-mp |
⊢ +∞ ≤ +∞ |
40 |
|
ico0 |
⊢ ( ( +∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) ) |
41 |
5 5 40
|
mp2an |
⊢ ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) |
42 |
39 41
|
mpbir |
⊢ ( +∞ [,) +∞ ) = ∅ |
43 |
37 42
|
eqtrdi |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ∅ ) |
44 |
|
0mbl |
⊢ ∅ ∈ dom vol |
45 |
43 44
|
eqeltrdi |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
46 |
36 45
|
jaoi |
⊢ ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
47 |
35 46
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
48 |
|
difmbl |
⊢ ( ( ( 𝐴 [,) +∞ ) ∈ dom vol ∧ ( 𝐵 [,) +∞ ) ∈ dom vol ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
49 |
26 47 48
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) +∞ ) ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
50 |
24 49
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
51 |
|
ico0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
52 |
2 51
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
53 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) |
54 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
55 |
53 54
|
xrlenltd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
56 |
52 55
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ ¬ 𝐴 < 𝐵 ) ) |
57 |
56
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) = ∅ ) |
58 |
57 44
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
59 |
50 58
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |