Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvval.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvval.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
hoidmvval.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
hoidmvval.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑋 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) ) |
7 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑋 → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
8 |
6 7
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
9 |
5 5 8
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
10 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
11 |
10 10
|
mpoex |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ∈ V ) |
13 |
1 9 4 12
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝑋 ) = ( 𝑎 ∈ ( ℝ ↑m 𝑋 ) , 𝑏 ∈ ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
14 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
16 |
|
fveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
18 |
15 17
|
oveq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
20 |
19
|
prodeq2ad |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
21 |
20
|
ifeq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
23 |
|
reex |
⊢ ℝ ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
25 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
26 |
24 4 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐴 : 𝑋 ⟶ ℝ ) ) |
27 |
2 26
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℝ ↑m 𝑋 ) ) |
28 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
29 |
24 4 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐵 : 𝑋 ⟶ ℝ ) ) |
30 |
3 29
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( ℝ ↑m 𝑋 ) ) |
31 |
|
c0ex |
⊢ 0 ∈ V |
32 |
|
prodex |
⊢ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ V |
33 |
31 32
|
ifex |
⊢ if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ∈ V ) |
35 |
13 22 27 30 34
|
ovmpod |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |