Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvval.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmvval.a |
|- ( ph -> A : X --> RR ) |
3 |
|
hoidmvval.b |
|- ( ph -> B : X --> RR ) |
4 |
|
hoidmvval.x |
|- ( ph -> X e. Fin ) |
5 |
|
oveq2 |
|- ( x = X -> ( RR ^m x ) = ( RR ^m X ) ) |
6 |
|
eqeq1 |
|- ( x = X -> ( x = (/) <-> X = (/) ) ) |
7 |
|
prodeq1 |
|- ( x = X -> prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) |
8 |
6 7
|
ifbieq2d |
|- ( x = X -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) |
9 |
5 5 8
|
mpoeq123dv |
|- ( x = X -> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
10 |
|
ovex |
|- ( RR ^m X ) e. _V |
11 |
10 10
|
mpoex |
|- ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) e. _V |
12 |
11
|
a1i |
|- ( ph -> ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) e. _V ) |
13 |
1 9 4 12
|
fvmptd3 |
|- ( ph -> ( L ` X ) = ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
14 |
|
fveq1 |
|- ( a = A -> ( a ` k ) = ( A ` k ) ) |
15 |
14
|
adantr |
|- ( ( a = A /\ b = B ) -> ( a ` k ) = ( A ` k ) ) |
16 |
|
fveq1 |
|- ( b = B -> ( b ` k ) = ( B ` k ) ) |
17 |
16
|
adantl |
|- ( ( a = A /\ b = B ) -> ( b ` k ) = ( B ` k ) ) |
18 |
15 17
|
oveq12d |
|- ( ( a = A /\ b = B ) -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
19 |
18
|
fveq2d |
|- ( ( a = A /\ b = B ) -> ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
20 |
19
|
prodeq2ad |
|- ( ( a = A /\ b = B ) -> prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
21 |
20
|
ifeq2d |
|- ( ( a = A /\ b = B ) -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
22 |
21
|
adantl |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
23 |
|
reex |
|- RR e. _V |
24 |
23
|
a1i |
|- ( ph -> RR e. _V ) |
25 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) |
26 |
24 4 25
|
syl2anc |
|- ( ph -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) |
27 |
2 26
|
mpbird |
|- ( ph -> A e. ( RR ^m X ) ) |
28 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) |
29 |
24 4 28
|
syl2anc |
|- ( ph -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) |
30 |
3 29
|
mpbird |
|- ( ph -> B e. ( RR ^m X ) ) |
31 |
|
c0ex |
|- 0 e. _V |
32 |
|
prodex |
|- prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. _V |
33 |
31 32
|
ifex |
|- if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. _V |
34 |
33
|
a1i |
|- ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. _V ) |
35 |
13 22 27 30 34
|
ovmpod |
|- ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |