| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval.l |  |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 2 |  | hoidmvval.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | hoidmvval.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | hoidmvval.x |  |-  ( ph -> X e. Fin ) | 
						
							| 5 |  | oveq2 |  |-  ( x = X -> ( RR ^m x ) = ( RR ^m X ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( x = X -> ( x = (/) <-> X = (/) ) ) | 
						
							| 7 |  | prodeq1 |  |-  ( x = X -> prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) | 
						
							| 8 | 6 7 | ifbieq2d |  |-  ( x = X -> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) | 
						
							| 9 | 5 5 8 | mpoeq123dv |  |-  ( x = X -> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) = ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 10 |  | ovex |  |-  ( RR ^m X ) e. _V | 
						
							| 11 | 10 10 | mpoex |  |-  ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) e. _V ) | 
						
							| 13 | 1 9 4 12 | fvmptd3 |  |-  ( ph -> ( L ` X ) = ( a e. ( RR ^m X ) , b e. ( RR ^m X ) |-> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) | 
						
							| 14 |  | fveq1 |  |-  ( a = A -> ( a ` k ) = ( A ` k ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( a = A /\ b = B ) -> ( a ` k ) = ( A ` k ) ) | 
						
							| 16 |  | fveq1 |  |-  ( b = B -> ( b ` k ) = ( B ` k ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( a = A /\ b = B ) -> ( b ` k ) = ( B ` k ) ) | 
						
							| 18 | 15 17 | oveq12d |  |-  ( ( a = A /\ b = B ) -> ( ( a ` k ) [,) ( b ` k ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( a = A /\ b = B ) -> ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 20 | 19 | prodeq2ad |  |-  ( ( a = A /\ b = B ) -> prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 21 | 20 | ifeq2d |  |-  ( ( a = A /\ b = B ) -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ ( a = A /\ b = B ) ) -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) | 
						
							| 23 |  | reex |  |-  RR e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 25 |  | elmapg |  |-  ( ( RR e. _V /\ X e. Fin ) -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) | 
						
							| 26 | 24 4 25 | syl2anc |  |-  ( ph -> ( A e. ( RR ^m X ) <-> A : X --> RR ) ) | 
						
							| 27 | 2 26 | mpbird |  |-  ( ph -> A e. ( RR ^m X ) ) | 
						
							| 28 |  | elmapg |  |-  ( ( RR e. _V /\ X e. Fin ) -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) | 
						
							| 29 | 24 4 28 | syl2anc |  |-  ( ph -> ( B e. ( RR ^m X ) <-> B : X --> RR ) ) | 
						
							| 30 | 3 29 | mpbird |  |-  ( ph -> B e. ( RR ^m X ) ) | 
						
							| 31 |  | c0ex |  |-  0 e. _V | 
						
							| 32 |  | prodex |  |-  prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. _V | 
						
							| 33 | 31 32 | ifex |  |-  if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) e. _V ) | 
						
							| 35 | 13 22 27 30 34 | ovmpod |  |-  ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |