Metamath Proof Explorer


Theorem hoissrrn2

Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoissrrn2.kph
|- F/ k ph
hoissrrn2.a
|- ( ( ph /\ k e. X ) -> A e. RR )
hoissrrn2.b
|- ( ( ph /\ k e. X ) -> B e. RR* )
Assertion hoissrrn2
|- ( ph -> X_ k e. X ( A [,) B ) C_ ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 hoissrrn2.kph
 |-  F/ k ph
2 hoissrrn2.a
 |-  ( ( ph /\ k e. X ) -> A e. RR )
3 hoissrrn2.b
 |-  ( ( ph /\ k e. X ) -> B e. RR* )
4 ovex
 |-  ( A [,) B ) e. _V
5 4 rgenw
 |-  A. k e. X ( A [,) B ) e. _V
6 ixpssmapg
 |-  ( A. k e. X ( A [,) B ) e. _V -> X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X ) )
7 5 6 ax-mp
 |-  X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X )
8 7 a1i
 |-  ( ph -> X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X ) )
9 reex
 |-  RR e. _V
10 9 a1i
 |-  ( ph -> RR e. _V )
11 icossre
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR )
12 2 3 11 syl2anc
 |-  ( ( ph /\ k e. X ) -> ( A [,) B ) C_ RR )
13 12 ex
 |-  ( ph -> ( k e. X -> ( A [,) B ) C_ RR ) )
14 1 13 ralrimi
 |-  ( ph -> A. k e. X ( A [,) B ) C_ RR )
15 iunss
 |-  ( U_ k e. X ( A [,) B ) C_ RR <-> A. k e. X ( A [,) B ) C_ RR )
16 14 15 sylibr
 |-  ( ph -> U_ k e. X ( A [,) B ) C_ RR )
17 mapss
 |-  ( ( RR e. _V /\ U_ k e. X ( A [,) B ) C_ RR ) -> ( U_ k e. X ( A [,) B ) ^m X ) C_ ( RR ^m X ) )
18 10 16 17 syl2anc
 |-  ( ph -> ( U_ k e. X ( A [,) B ) ^m X ) C_ ( RR ^m X ) )
19 8 18 sstrd
 |-  ( ph -> X_ k e. X ( A [,) B ) C_ ( RR ^m X ) )