| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoissrrn2.kph |
|- F/ k ph |
| 2 |
|
hoissrrn2.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
| 3 |
|
hoissrrn2.b |
|- ( ( ph /\ k e. X ) -> B e. RR* ) |
| 4 |
|
ovex |
|- ( A [,) B ) e. _V |
| 5 |
4
|
rgenw |
|- A. k e. X ( A [,) B ) e. _V |
| 6 |
|
ixpssmapg |
|- ( A. k e. X ( A [,) B ) e. _V -> X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X ) ) |
| 7 |
5 6
|
ax-mp |
|- X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X ) |
| 8 |
7
|
a1i |
|- ( ph -> X_ k e. X ( A [,) B ) C_ ( U_ k e. X ( A [,) B ) ^m X ) ) |
| 9 |
|
reex |
|- RR e. _V |
| 10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
| 11 |
|
icossre |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) |
| 12 |
2 3 11
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( A [,) B ) C_ RR ) |
| 13 |
12
|
ex |
|- ( ph -> ( k e. X -> ( A [,) B ) C_ RR ) ) |
| 14 |
1 13
|
ralrimi |
|- ( ph -> A. k e. X ( A [,) B ) C_ RR ) |
| 15 |
|
iunss |
|- ( U_ k e. X ( A [,) B ) C_ RR <-> A. k e. X ( A [,) B ) C_ RR ) |
| 16 |
14 15
|
sylibr |
|- ( ph -> U_ k e. X ( A [,) B ) C_ RR ) |
| 17 |
|
mapss |
|- ( ( RR e. _V /\ U_ k e. X ( A [,) B ) C_ RR ) -> ( U_ k e. X ( A [,) B ) ^m X ) C_ ( RR ^m X ) ) |
| 18 |
10 16 17
|
syl2anc |
|- ( ph -> ( U_ k e. X ( A [,) B ) ^m X ) C_ ( RR ^m X ) ) |
| 19 |
8 18
|
sstrd |
|- ( ph -> X_ k e. X ( A [,) B ) C_ ( RR ^m X ) ) |