Metamath Proof Explorer


Theorem hoissrrn2

Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoissrrn2.kph k φ
hoissrrn2.a φ k X A
hoissrrn2.b φ k X B *
Assertion hoissrrn2 φ k X A B X

Proof

Step Hyp Ref Expression
1 hoissrrn2.kph k φ
2 hoissrrn2.a φ k X A
3 hoissrrn2.b φ k X B *
4 ovex A B V
5 4 rgenw k X A B V
6 ixpssmapg k X A B V k X A B k X A B X
7 5 6 ax-mp k X A B k X A B X
8 7 a1i φ k X A B k X A B X
9 reex V
10 9 a1i φ V
11 icossre A B * A B
12 2 3 11 syl2anc φ k X A B
13 12 ex φ k X A B
14 1 13 ralrimi φ k X A B
15 iunss k X A B k X A B
16 14 15 sylibr φ k X A B
17 mapss V k X A B k X A B X X
18 10 16 17 syl2anc φ k X A B X X
19 8 18 sstrd φ k X A B X