Metamath Proof Explorer


Theorem hoissrrn2

Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoissrrn2.kph kφ
hoissrrn2.a φkXA
hoissrrn2.b φkXB*
Assertion hoissrrn2 φkXABX

Proof

Step Hyp Ref Expression
1 hoissrrn2.kph kφ
2 hoissrrn2.a φkXA
3 hoissrrn2.b φkXB*
4 ovex ABV
5 4 rgenw kXABV
6 ixpssmapg kXABVkXABkXABX
7 5 6 ax-mp kXABkXABX
8 7 a1i φkXABkXABX
9 reex V
10 9 a1i φV
11 icossre AB*AB
12 2 3 11 syl2anc φkXAB
13 12 ex φkXAB
14 1 13 ralrimi φkXAB
15 iunss kXABkXAB
16 14 15 sylibr φkXAB
17 mapss VkXABkXABXX
18 10 16 17 syl2anc φkXABXX
19 8 18 sstrd φkXABX