Metamath Proof Explorer


Theorem homulid2

Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion homulid2
|- ( T : ~H --> ~H -> ( 1 .op T ) = T )

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 homval
 |-  ( ( 1 e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( 1 .h ( T ` x ) ) )
3 1 2 mp3an1
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( 1 .h ( T ` x ) ) )
4 ffvelrn
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H )
5 ax-hvmulid
 |-  ( ( T ` x ) e. ~H -> ( 1 .h ( T ` x ) ) = ( T ` x ) )
6 4 5 syl
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 1 .h ( T ` x ) ) = ( T ` x ) )
7 3 6 eqtrd
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( T ` x ) )
8 7 ralrimiva
 |-  ( T : ~H --> ~H -> A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) )
9 homulcl
 |-  ( ( 1 e. CC /\ T : ~H --> ~H ) -> ( 1 .op T ) : ~H --> ~H )
10 1 9 mpan
 |-  ( T : ~H --> ~H -> ( 1 .op T ) : ~H --> ~H )
11 hoeq
 |-  ( ( ( 1 .op T ) : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) <-> ( 1 .op T ) = T ) )
12 10 11 mpancom
 |-  ( T : ~H --> ~H -> ( A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) <-> ( 1 .op T ) = T ) )
13 8 12 mpbid
 |-  ( T : ~H --> ~H -> ( 1 .op T ) = T )