| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosubsub2 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( S +op ( U -op T ) ) ) | 
						
							| 2 |  | hoaddsubass |  |-  ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op U ) -op T ) = ( S +op ( U -op T ) ) ) | 
						
							| 3 |  | hoaddsub |  |-  ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op U ) -op T ) = ( ( S -op T ) +op U ) ) | 
						
							| 4 | 2 3 | eqtr3d |  |-  ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op ( U -op T ) ) = ( ( S -op T ) +op U ) ) | 
						
							| 5 | 4 | 3com23 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( U -op T ) ) = ( ( S -op T ) +op U ) ) | 
						
							| 6 | 1 5 | eqtrd |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( ( S -op T ) +op U ) ) |