| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosubcl |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) : ~H --> ~H ) | 
						
							| 2 |  | honegsub |  |-  ( ( S : ~H --> ~H /\ ( T -op U ) : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( S : ~H --> ~H /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) | 
						
							| 4 | 3 | 3impb |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) | 
						
							| 5 |  | honegsubdi2 |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( U -op T ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S +op ( U -op T ) ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S +op ( U -op T ) ) ) | 
						
							| 8 | 4 7 | eqtr3d |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( S +op ( U -op T ) ) ) |