| Step | Hyp | Ref | Expression | 
						
							| 1 |  | honegsubdi |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( ( -u 1 .op T ) +op U ) ) | 
						
							| 2 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 3 |  | homulcl |  |-  ( ( -u 1 e. CC /\ T : ~H --> ~H ) -> ( -u 1 .op T ) : ~H --> ~H ) | 
						
							| 4 | 2 3 | mpan |  |-  ( T : ~H --> ~H -> ( -u 1 .op T ) : ~H --> ~H ) | 
						
							| 5 |  | hoaddcom |  |-  ( ( ( -u 1 .op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op U ) = ( U +op ( -u 1 .op T ) ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op U ) = ( U +op ( -u 1 .op T ) ) ) | 
						
							| 7 |  | honegsub |  |-  ( ( U : ~H --> ~H /\ T : ~H --> ~H ) -> ( U +op ( -u 1 .op T ) ) = ( U -op T ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( U +op ( -u 1 .op T ) ) = ( U -op T ) ) | 
						
							| 9 | 1 6 8 | 3eqtrd |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( U -op T ) ) |