| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 2 |  | homulcl |  |-  ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) | 
						
							| 3 | 1 2 | mpan |  |-  ( U : ~H --> ~H -> ( -u 1 .op U ) : ~H --> ~H ) | 
						
							| 4 |  | honegdi |  |-  ( ( T : ~H --> ~H /\ ( -u 1 .op U ) : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) ) | 
						
							| 6 |  | honegsub |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( -u 1 .op ( T -op U ) ) ) | 
						
							| 8 |  | honegneg |  |-  ( U : ~H --> ~H -> ( -u 1 .op ( -u 1 .op U ) ) = U ) | 
						
							| 9 | 8 | adantl |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( -u 1 .op U ) ) = U ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op U ) ) | 
						
							| 11 | 5 7 10 | 3eqtr3d |  |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( ( -u 1 .op T ) +op U ) ) |