| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 2 |  | homulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝑈 :  ℋ ⟶  ℋ  →  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 4 |  | honegdi | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( ( - 1  ·op  𝑇 )  +op  ( - 1  ·op  ( - 1  ·op  𝑈 ) ) ) ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( ( - 1  ·op  𝑇 )  +op  ( - 1  ·op  ( - 1  ·op  𝑈 ) ) ) ) | 
						
							| 6 |  | honegsub | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  =  ( 𝑇  −op  𝑈 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( - 1  ·op  ( 𝑇  −op  𝑈 ) ) ) | 
						
							| 8 |  | honegneg | ⊢ ( 𝑈 :  ℋ ⟶  ℋ  →  ( - 1  ·op  ( - 1  ·op  𝑈 ) )  =  𝑈 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( - 1  ·op  𝑈 ) )  =  𝑈 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( ( - 1  ·op  𝑇 )  +op  ( - 1  ·op  ( - 1  ·op  𝑈 ) ) )  =  ( ( - 1  ·op  𝑇 )  +op  𝑈 ) ) | 
						
							| 11 | 5 7 10 | 3eqtr3d | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  −op  𝑈 ) )  =  ( ( - 1  ·op  𝑇 )  +op  𝑈 ) ) |