Metamath Proof Explorer


Theorem honegsubdi

Description: Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegsubdi T:U:-1·opT-opU=-1·opT+opU

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 homulcl 1U:-1·opU:
3 1 2 mpan U:-1·opU:
4 honegdi T:-1·opU:-1·opT+op-1·opU=-1·opT+op-1·op-1·opU
5 3 4 sylan2 T:U:-1·opT+op-1·opU=-1·opT+op-1·op-1·opU
6 honegsub T:U:T+op-1·opU=T-opU
7 6 oveq2d T:U:-1·opT+op-1·opU=-1·opT-opU
8 honegneg U:-1·op-1·opU=U
9 8 adantl T:U:-1·op-1·opU=U
10 9 oveq2d T:U:-1·opT+op-1·op-1·opU=-1·opT+opU
11 5 7 10 3eqtr3d T:U:-1·opT-opU=-1·opT+opU