| Step | Hyp | Ref | Expression | 
						
							| 1 |  | honegsubdi | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  −op  𝑈 ) )  =  ( ( - 1  ·op  𝑇 )  +op  𝑈 ) ) | 
						
							| 2 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 3 |  | homulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  𝑇 ) :  ℋ ⟶  ℋ ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( - 1  ·op  𝑇 ) :  ℋ ⟶  ℋ ) | 
						
							| 5 |  | hoaddcom | ⊢ ( ( ( - 1  ·op  𝑇 ) :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( ( - 1  ·op  𝑇 )  +op  𝑈 )  =  ( 𝑈  +op  ( - 1  ·op  𝑇 ) ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( ( - 1  ·op  𝑇 )  +op  𝑈 )  =  ( 𝑈  +op  ( - 1  ·op  𝑇 ) ) ) | 
						
							| 7 |  | honegsub | ⊢ ( ( 𝑈 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑈  +op  ( - 1  ·op  𝑇 ) )  =  ( 𝑈  −op  𝑇 ) ) | 
						
							| 8 | 7 | ancoms | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝑈  +op  ( - 1  ·op  𝑇 ) )  =  ( 𝑈  −op  𝑇 ) ) | 
						
							| 9 | 1 6 8 | 3eqtrd | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  ( 𝑇  −op  𝑈 ) )  =  ( 𝑈  −op  𝑇 ) ) |