Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpgid.p | |- P = ( Base ` G ) |
|
hpgid.i | |- I = ( Itv ` G ) |
||
hpgid.l | |- L = ( LineG ` G ) |
||
hpgid.g | |- ( ph -> G e. TarskiG ) |
||
hpgid.d | |- ( ph -> D e. ran L ) |
||
hpgid.a | |- ( ph -> A e. P ) |
||
hpgid.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
||
hphl.k | |- K = ( hlG ` G ) |
||
hphl.a | |- ( ph -> A e. D ) |
||
hphl.b | |- ( ph -> B e. P ) |
||
hphl.c | |- ( ph -> C e. P ) |
||
hphl.1 | |- ( ph -> -. B e. D ) |
||
hphl.2 | |- ( ph -> B ( K ` A ) C ) |
||
Assertion | hphl | |- ( ph -> B ( ( hpG ` G ) ` D ) C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgid.p | |- P = ( Base ` G ) |
|
2 | hpgid.i | |- I = ( Itv ` G ) |
|
3 | hpgid.l | |- L = ( LineG ` G ) |
|
4 | hpgid.g | |- ( ph -> G e. TarskiG ) |
|
5 | hpgid.d | |- ( ph -> D e. ran L ) |
|
6 | hpgid.a | |- ( ph -> A e. P ) |
|
7 | hpgid.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
|
8 | hphl.k | |- K = ( hlG ` G ) |
|
9 | hphl.a | |- ( ph -> A e. D ) |
|
10 | hphl.b | |- ( ph -> B e. P ) |
|
11 | hphl.c | |- ( ph -> C e. P ) |
|
12 | hphl.1 | |- ( ph -> -. B e. D ) |
|
13 | hphl.2 | |- ( ph -> B ( K ` A ) C ) |
|
14 | 1 2 8 10 11 6 4 3 13 | hlln | |- ( ph -> B e. ( C L A ) ) |
15 | 14 | orcd | |- ( ph -> ( B e. ( C L A ) \/ C = A ) ) |
16 | 1 3 2 4 11 6 10 15 | colrot2 | |- ( ph -> ( A e. ( B L C ) \/ B = C ) ) |
17 | 1 2 3 4 5 10 7 11 9 16 8 | colhp | |- ( ph -> ( B ( ( hpG ` G ) ` D ) C <-> ( B ( K ` A ) C /\ -. B e. D ) ) ) |
18 | 13 12 17 | mpbir2and | |- ( ph -> B ( ( hpG ` G ) ` D ) C ) |