Metamath Proof Explorer


Theorem hphl

Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses hpgid.p
|- P = ( Base ` G )
hpgid.i
|- I = ( Itv ` G )
hpgid.l
|- L = ( LineG ` G )
hpgid.g
|- ( ph -> G e. TarskiG )
hpgid.d
|- ( ph -> D e. ran L )
hpgid.a
|- ( ph -> A e. P )
hpgid.o
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
hphl.k
|- K = ( hlG ` G )
hphl.a
|- ( ph -> A e. D )
hphl.b
|- ( ph -> B e. P )
hphl.c
|- ( ph -> C e. P )
hphl.1
|- ( ph -> -. B e. D )
hphl.2
|- ( ph -> B ( K ` A ) C )
Assertion hphl
|- ( ph -> B ( ( hpG ` G ) ` D ) C )

Proof

Step Hyp Ref Expression
1 hpgid.p
 |-  P = ( Base ` G )
2 hpgid.i
 |-  I = ( Itv ` G )
3 hpgid.l
 |-  L = ( LineG ` G )
4 hpgid.g
 |-  ( ph -> G e. TarskiG )
5 hpgid.d
 |-  ( ph -> D e. ran L )
6 hpgid.a
 |-  ( ph -> A e. P )
7 hpgid.o
 |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
8 hphl.k
 |-  K = ( hlG ` G )
9 hphl.a
 |-  ( ph -> A e. D )
10 hphl.b
 |-  ( ph -> B e. P )
11 hphl.c
 |-  ( ph -> C e. P )
12 hphl.1
 |-  ( ph -> -. B e. D )
13 hphl.2
 |-  ( ph -> B ( K ` A ) C )
14 1 2 8 10 11 6 4 3 13 hlln
 |-  ( ph -> B e. ( C L A ) )
15 14 orcd
 |-  ( ph -> ( B e. ( C L A ) \/ C = A ) )
16 1 3 2 4 11 6 10 15 colrot2
 |-  ( ph -> ( A e. ( B L C ) \/ B = C ) )
17 1 2 3 4 5 10 7 11 9 16 8 colhp
 |-  ( ph -> ( B ( ( hpG ` G ) ` D ) C <-> ( B ( K ` A ) C /\ -. B e. D ) ) )
18 13 12 17 mpbir2and
 |-  ( ph -> B ( ( hpG ` G ) ` D ) C )