| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpgid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hpgid.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | hpgid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hpgid.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 6 |  | hpgid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hpgid.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 8 |  | hphl.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 9 |  | hphl.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 10 |  | hphl.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | hphl.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 12 |  | hphl.1 | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 13 |  | hphl.2 | ⊢ ( 𝜑  →  𝐵 ( 𝐾 ‘ 𝐴 ) 𝐶 ) | 
						
							| 14 | 1 2 8 10 11 6 4 3 13 | hlln | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐶 𝐿 𝐴 ) ) | 
						
							| 15 | 14 | orcd | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐶 𝐿 𝐴 )  ∨  𝐶  =  𝐴 ) ) | 
						
							| 16 | 1 3 2 4 11 6 10 15 | colrot2 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐵 𝐿 𝐶 )  ∨  𝐵  =  𝐶 ) ) | 
						
							| 17 | 1 2 3 4 5 10 7 11 9 16 8 | colhp | ⊢ ( 𝜑  →  ( 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶  ↔  ( 𝐵 ( 𝐾 ‘ 𝐴 ) 𝐶  ∧  ¬  𝐵  ∈  𝐷 ) ) ) | 
						
							| 18 | 13 12 17 | mpbir2and | ⊢ ( 𝜑  →  𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) |