| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpgid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hpgid.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | hpgid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hpgid.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 6 |  | hpgid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hpgid.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 8 |  | colopp.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | colopp.p | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 10 |  | colopp.1 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 11 |  | colhp.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 12 |  | ancom | ⊢ ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ∧  ¬  𝐴  ∈  𝐷 )  ↔  ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ∧  ¬  𝐴  ∈  𝐷 )  ↔  ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐵  ∈  𝑃 ) | 
						
							| 17 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 18 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 19 | 1 3 2 4 5 9 | tglnpt | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 )  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) | 
						
							| 21 | 1 17 2 3 18 4 19 20 6 | mircl | ⊢ ( 𝜑  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐶  ∈  𝐷 ) | 
						
							| 24 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐶  ∈  𝑃 ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 26 |  | nelne2 | ⊢ ( ( 𝐶  ∈  𝐷  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐶  ≠  𝐴 ) | 
						
							| 27 | 9 26 | sylan | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐶  ≠  𝐴 ) | 
						
							| 28 | 27 | necomd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐴  ≠  𝐶 ) | 
						
							| 29 | 1 17 2 3 18 4 19 20 6 | mirbtwn | ⊢ ( 𝜑  →  𝐶  ∈  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) | 
						
							| 30 | 1 17 2 4 21 19 6 29 | tgbtwncom | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐶  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 32 | 1 2 3 14 25 24 22 28 31 | btwnlng3 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  ( 𝐴 𝐿 𝐶 ) ) | 
						
							| 33 | 1 3 2 4 6 8 19 10 | colrot1 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐵 𝐿 𝐶 )  ∨  𝐵  =  𝐶 ) ) | 
						
							| 34 | 1 3 2 4 8 19 6 33 | colcom | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐶 𝐿 𝐵 )  ∨  𝐶  =  𝐵 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐴  ∈  ( 𝐶 𝐿 𝐵 )  ∨  𝐶  =  𝐵 ) ) | 
						
							| 36 | 1 2 3 14 22 25 24 16 32 35 | coltr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  ( 𝐶 𝐿 𝐵 )  ∨  𝐶  =  𝐵 ) ) | 
						
							| 37 | 1 3 2 14 24 16 22 36 | colrot1 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐶  ∈  ( 𝐵 𝐿 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∨  𝐵  =  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 38 | 1 2 3 14 15 16 7 22 23 37 | colopp | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ↔  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 40 | 1 17 2 3 18 4 19 20 6 | mirmir | ⊢ ( 𝜑  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 42 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 43 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 44 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  𝐶  ∈  𝐷 ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 46 | 1 17 2 3 18 42 20 43 44 45 | mirln | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 47 | 41 46 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 48 | 47 | stoic1a | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  =  𝐶 )  →  𝑡  =  𝐶 ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑡  =  𝐶 )  →  ( 𝑡  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ↔  𝐶  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) | 
						
							| 51 | 9 50 30 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 53 | 39 48 52 | jca31 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) | 
						
							| 54 | 1 17 2 7 25 22 | islnopp | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) ) | 
						
							| 55 | 53 54 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  𝐴 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) | 
						
							| 56 | 1 2 3 7 14 15 25 16 22 55 | lnopp2hpgb | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐵 𝑂 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ↔  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) | 
						
							| 57 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 58 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 59 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 60 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 61 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐶  ∈  𝐷 ) | 
						
							| 62 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 63 |  | nelne2 | ⊢ ( ( 𝐶  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  →  𝐶  ≠  𝐵 ) | 
						
							| 64 | 63 | necomd | ⊢ ( ( 𝐶  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  →  𝐵  ≠  𝐶 ) | 
						
							| 65 | 61 62 64 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐵  ≠  𝐶 ) | 
						
							| 66 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐴  ≠  𝐶 ) | 
						
							| 67 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 68 | 1 17 2 3 18 60 20 11 59 57 58 58 65 66 67 | mirhl2 | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) | 
						
							| 69 | 1 2 11 57 58 59 60 68 | hlcomd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷 ) )  →  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) | 
						
							| 70 | 69 | 3adantr3 | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) )  →  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) | 
						
							| 71 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 72 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 73 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝑃 ) | 
						
							| 74 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 75 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 76 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) | 
						
							| 77 | 30 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐶  ∈  ( 𝐴 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 78 | 1 2 11 71 72 73 74 75 76 77 | btwnhl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 79 | 1 2 11 71 72 75 74 3 76 | hlln | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 81 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 82 | 16 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐵  ∈  𝑃 ) | 
						
							| 83 | 75 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐶  ∈  𝑃 ) | 
						
							| 84 | 25 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 85 | 76 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) | 
						
							| 86 | 1 2 11 84 82 83 81 85 | hlne2 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐵  ≠  𝐶 ) | 
						
							| 87 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 88 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐵  ∈  𝐷 ) | 
						
							| 89 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐶  ∈  𝐷 ) | 
						
							| 90 | 1 2 3 81 82 83 86 86 87 88 89 | tglinethru | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐷  =  ( 𝐵 𝐿 𝐶 ) ) | 
						
							| 91 | 80 90 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 92 | 39 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  ∧  𝐵  ∈  𝐷 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 93 | 91 92 | pm2.65da | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 94 | 48 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 95 | 78 93 94 | 3jca | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  →  ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 ) ) | 
						
							| 96 | 70 95 | impbida | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( ( 𝐶  ∈  ( 𝐵 𝐼 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )  ∧  ¬  𝐵  ∈  𝐷  ∧  ¬  ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 )  ∈  𝐷 )  ↔  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 97 | 38 56 96 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐷 )  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 98 | 97 | pm5.32da | ⊢ ( 𝜑  →  ( ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  ↔  ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) ) ) | 
						
							| 99 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) )  →  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) | 
						
							| 100 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 101 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 102 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 103 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 104 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) | 
						
							| 105 | 1 2 3 7 100 101 102 103 104 | hpgne1 | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 106 | 105 104 | jca | ⊢ ( ( 𝜑  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  →  ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) | 
						
							| 107 | 99 106 | impbida | ⊢ ( 𝜑  →  ( ( ¬  𝐴  ∈  𝐷  ∧  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )  ↔  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) ) | 
						
							| 108 | 13 98 107 | 3bitr2rd | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ∧  ¬  𝐴  ∈  𝐷 ) ) ) |