| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
mirmir.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
mircgr |
⊢ ( 𝜑 → ( 𝐴 − ( 𝑀 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐴 − ( 𝑀 ‘ 𝐵 ) ) ) |
| 13 |
1 2 3 4 5 6 7 8 9
|
mirbtwn |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
| 14 |
1 2 3 6 10 7 9 13
|
tgbtwncom |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
| 15 |
1 2 3 4 5 6 7 8 10 9 12 14
|
ismir |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) ) |
| 16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |