Metamath Proof Explorer
Description: Closure of the point inversion function. (Contributed by Thierry
Arnoux, 20-Oct-2019)
|
|
Ref |
Expression |
|
Hypotheses |
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
|
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
|
|
mircl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
|
Assertion |
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
|
mircl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
1 2 3 4 5 6 7 8
|
mirf |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |
| 11 |
10 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |