Metamath Proof Explorer
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tglng.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tglng.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
tglng.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tglnpt.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tglnpt.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
|
|
tglnpt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
Assertion |
tglnpt |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglng.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglng.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglng.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglnpt.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglnpt.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
| 6 |
|
tglnpt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
1 2 3
|
tglnunirn |
⊢ ( 𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃 ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → ∪ ran 𝐿 ⊆ 𝑃 ) |
| 9 |
|
elssuni |
⊢ ( 𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿 ) |
| 10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran 𝐿 ) |
| 11 |
10 6
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ∪ ran 𝐿 ) |
| 12 |
8 11
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |