| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglng.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglng.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglng.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
1 2 3
|
tglng |
⊢ ( 𝐺 ∈ TarskiG → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) |
| 5 |
4
|
rneqd |
⊢ ( 𝐺 ∈ TarskiG → ran 𝐿 = ran ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝐺 ∈ TarskiG → ( 𝑝 ∈ ran 𝐿 ↔ 𝑝 ∈ ran ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) ) |
| 7 |
6
|
biimpa |
⊢ ( ( 𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿 ) → 𝑝 ∈ ran ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) |
| 9 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 10 |
9
|
rabex |
⊢ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ∈ V |
| 11 |
8 10
|
elrnmpo |
⊢ ( 𝑝 ∈ ran ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) |
| 12 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ⊆ 𝑃 |
| 13 |
|
sseq1 |
⊢ ( 𝑝 = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → ( 𝑝 ⊆ 𝑃 ↔ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ⊆ 𝑃 ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( 𝑝 = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝 ⊆ 𝑃 ) |
| 15 |
14
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝 ⊆ 𝑃 ) |
| 16 |
15
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝 ⊆ 𝑃 ) |
| 17 |
11 16
|
sylbi |
⊢ ( 𝑝 ∈ ran ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) → 𝑝 ⊆ 𝑃 ) |
| 18 |
7 17
|
syl |
⊢ ( ( 𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿 ) → 𝑝 ⊆ 𝑃 ) |
| 19 |
18
|
ralrimiva |
⊢ ( 𝐺 ∈ TarskiG → ∀ 𝑝 ∈ ran 𝐿 𝑝 ⊆ 𝑃 ) |
| 20 |
|
unissb |
⊢ ( ∪ ran 𝐿 ⊆ 𝑃 ↔ ∀ 𝑝 ∈ ran 𝐿 𝑝 ⊆ 𝑃 ) |
| 21 |
19 20
|
sylibr |
⊢ ( 𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃 ) |