Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglng.p | |- P = ( Base ` G ) |
|
| tglng.l | |- L = ( LineG ` G ) |
||
| tglng.i | |- I = ( Itv ` G ) |
||
| tglnpt.g | |- ( ph -> G e. TarskiG ) |
||
| tglnpt.a | |- ( ph -> A e. ran L ) |
||
| tglnpt.x | |- ( ph -> X e. A ) |
||
| Assertion | tglnpt | |- ( ph -> X e. P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglng.p | |- P = ( Base ` G ) |
|
| 2 | tglng.l | |- L = ( LineG ` G ) |
|
| 3 | tglng.i | |- I = ( Itv ` G ) |
|
| 4 | tglnpt.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglnpt.a | |- ( ph -> A e. ran L ) |
|
| 6 | tglnpt.x | |- ( ph -> X e. A ) |
|
| 7 | 1 2 3 | tglnunirn | |- ( G e. TarskiG -> U. ran L C_ P ) |
| 8 | 4 7 | syl | |- ( ph -> U. ran L C_ P ) |
| 9 | elssuni | |- ( A e. ran L -> A C_ U. ran L ) |
|
| 10 | 5 9 | syl | |- ( ph -> A C_ U. ran L ) |
| 11 | 10 6 | sseldd | |- ( ph -> X e. U. ran L ) |
| 12 | 8 11 | sseldd | |- ( ph -> X e. P ) |