| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
hlln.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 9 |
|
hlln.2 |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 16 |
1 10 2 11 12 13 14 15
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 17 |
16
|
3mix1d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 23 |
1 10 2 18 19 20 21 22
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 24 |
23
|
3mix2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 25 |
1 2 3 4 5 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
| 26 |
9 25
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) |
| 27 |
26
|
simp3d |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
| 28 |
17 24 27
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 29 |
26
|
simp2d |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 30 |
1 8 2 7 5 6 29 4
|
tgellng |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) ) |
| 31 |
28 30
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |