| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | islnopp.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | islnopp.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝐴  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 8 | 7 | anbi1d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢 𝐼 𝑣 )  =  ( 𝐴 𝐼 𝑣 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑢  =  𝐴  →  ( 𝑡  ∈  ( 𝑢 𝐼 𝑣 )  ↔  𝑡  ∈  ( 𝐴 𝐼 𝑣 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑢  =  𝐴  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑣 ) ) ) | 
						
							| 12 | 8 11 | anbi12d | ⊢ ( 𝑢  =  𝐴  →  ( ( ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 ) )  ↔  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑣 ) ) ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑣  =  𝐵  →  ( 𝑣  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝐵  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑣  =  𝐵  →  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑣  =  𝐵  →  ( 𝐴 𝐼 𝑣 )  =  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( 𝑣  =  𝐵  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝑣 )  ↔  𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( 𝑣  =  𝐵  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑣 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 18 | 14 17 | anbi12d | ⊢ ( 𝑣  =  𝐵  →  ( ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑣 ) )  ↔  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  𝑎  =  𝑢 ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑢  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  𝑏  =  𝑣 ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑣  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 24 |  | oveq12 | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑎 𝐼 𝑏 )  =  ( 𝑢 𝐼 𝑣 ) ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  𝑡  ∈  ( 𝑢 𝐼 𝑣 ) ) ) | 
						
							| 26 | 25 | rexbidv | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 ) ) ) | 
						
							| 27 | 23 26 | anbi12d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) )  ↔  ( ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 ) ) ) ) | 
						
							| 28 | 27 | cbvopabv | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 ) ) } | 
						
							| 29 | 4 28 | eqtri | ⊢ 𝑂  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑣  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑢 𝐼 𝑣 ) ) } | 
						
							| 30 | 12 18 29 | brabg | ⊢ ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  →  ( 𝐴 𝑂 𝐵  ↔  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 31 | 5 6 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 32 | 5 | biantrurd | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  𝐷  ↔  ( 𝐴  ∈  𝑃  ∧  ¬  𝐴  ∈  𝐷 ) ) ) | 
						
							| 33 |  | eldif | ⊢ ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ↔  ( 𝐴  ∈  𝑃  ∧  ¬  𝐴  ∈  𝐷 ) ) | 
						
							| 34 | 32 33 | bitr4di | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  𝐷  ↔  𝐴  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 35 | 6 | biantrurd | ⊢ ( 𝜑  →  ( ¬  𝐵  ∈  𝐷  ↔  ( 𝐵  ∈  𝑃  ∧  ¬  𝐵  ∈  𝐷 ) ) ) | 
						
							| 36 |  | eldif | ⊢ ( 𝐵  ∈  ( 𝑃  ∖  𝐷 )  ↔  ( 𝐵  ∈  𝑃  ∧  ¬  𝐵  ∈  𝐷 ) ) | 
						
							| 37 | 35 36 | bitr4di | ⊢ ( 𝜑  →  ( ¬  𝐵  ∈  𝐷  ↔  𝐵  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 38 | 34 37 | anbi12d | ⊢ ( 𝜑  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ↔  ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 39 | 38 | anbi1d | ⊢ ( 𝜑  →  ( ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) )  ↔  ( ( 𝐴  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝐵  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 40 | 31 39 | bitr4d | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) |