Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
islnopp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
islnopp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
eleq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝐼 𝑣 ) = ( 𝐴 𝐼 𝑣 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑢 = 𝐴 → ( 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ↔ 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑢 = 𝐴 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) |
12 |
8 11
|
anbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐴 𝐼 𝑣 ) = ( 𝐴 𝐼 𝐵 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑣 = 𝐵 → ( 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ↔ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
18 |
14 17
|
anbi12d |
⊢ ( 𝑣 = 𝐵 → ( ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑎 = 𝑢 ) |
20 |
19
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
21 |
|
simpr |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑏 = 𝑣 ) |
22 |
21
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
24 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑢 𝐼 𝑣 ) ) |
25 |
24
|
eleq2d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
27 |
23 26
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) ) |
28 |
27
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) } |
29 |
4 28
|
eqtri |
⊢ 𝑂 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) } |
30 |
12 18 29
|
brabg |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 𝑂 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
31 |
5 6 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
32 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷 ) ) ) |
33 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ↔ ( 𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷 ) ) |
34 |
32 33
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
35 |
6
|
biantrurd |
⊢ ( 𝜑 → ( ¬ 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷 ) ) ) |
36 |
|
eldif |
⊢ ( 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ↔ ( 𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷 ) ) |
37 |
35 36
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝐵 ∈ 𝐷 ↔ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
38 |
34 37
|
anbi12d |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
39 |
38
|
anbi1d |
⊢ ( 𝜑 → ( ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
40 |
31 39
|
bitr4d |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |