| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | islnoppd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | islnoppd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | islnoppd.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 8 |  | islnoppd.1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 9 |  | islnoppd.2 | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 10 |  | islnoppd.3 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  =  𝐶 )  →  𝑡  =  𝐶 ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑡  =  𝐶 )  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 13 | 7 12 10 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 14 | 8 9 13 | jca31 | ⊢ ( 𝜑  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | islnopp | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝐵  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 16 | 14 15 | mpbird | ⊢ ( 𝜑  →  𝐴 𝑂 𝐵 ) |