Metamath Proof Explorer


Theorem islnoppd

Description: Deduce that A and B lie on opposite sides of line L . (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
islnoppd.a φAP
islnoppd.b φBP
islnoppd.c φCD
islnoppd.1 φ¬AD
islnoppd.2 φ¬BD
islnoppd.3 φCAIB
Assertion islnoppd φAOB

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 islnoppd.a φAP
6 islnoppd.b φBP
7 islnoppd.c φCD
8 islnoppd.1 φ¬AD
9 islnoppd.2 φ¬BD
10 islnoppd.3 φCAIB
11 simpr φt=Ct=C
12 11 eleq1d φt=CtAIBCAIB
13 7 12 10 rspcedvd φtDtAIB
14 8 9 13 jca31 φ¬AD¬BDtDtAIB
15 1 2 3 4 5 6 islnopp φAOB¬AD¬BDtDtAIB
16 14 15 mpbird φAOB