| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | islnoppd.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | islnoppd.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | islnoppd.c |  |-  ( ph -> C e. D ) | 
						
							| 8 |  | islnoppd.1 |  |-  ( ph -> -. A e. D ) | 
						
							| 9 |  | islnoppd.2 |  |-  ( ph -> -. B e. D ) | 
						
							| 10 |  | islnoppd.3 |  |-  ( ph -> C e. ( A I B ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ t = C ) -> t = C ) | 
						
							| 12 | 11 | eleq1d |  |-  ( ( ph /\ t = C ) -> ( t e. ( A I B ) <-> C e. ( A I B ) ) ) | 
						
							| 13 | 7 12 10 | rspcedvd |  |-  ( ph -> E. t e. D t e. ( A I B ) ) | 
						
							| 14 | 8 9 13 | jca31 |  |-  ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | islnopp |  |-  ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) | 
						
							| 16 | 14 15 | mpbird |  |-  ( ph -> A O B ) |