Metamath Proof Explorer


Theorem islnoppd

Description: Deduce that A and B lie on opposite sides of line L . (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses hpg.p
|- P = ( Base ` G )
hpg.d
|- .- = ( dist ` G )
hpg.i
|- I = ( Itv ` G )
hpg.o
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
islnoppd.a
|- ( ph -> A e. P )
islnoppd.b
|- ( ph -> B e. P )
islnoppd.c
|- ( ph -> C e. D )
islnoppd.1
|- ( ph -> -. A e. D )
islnoppd.2
|- ( ph -> -. B e. D )
islnoppd.3
|- ( ph -> C e. ( A I B ) )
Assertion islnoppd
|- ( ph -> A O B )

Proof

Step Hyp Ref Expression
1 hpg.p
 |-  P = ( Base ` G )
2 hpg.d
 |-  .- = ( dist ` G )
3 hpg.i
 |-  I = ( Itv ` G )
4 hpg.o
 |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
5 islnoppd.a
 |-  ( ph -> A e. P )
6 islnoppd.b
 |-  ( ph -> B e. P )
7 islnoppd.c
 |-  ( ph -> C e. D )
8 islnoppd.1
 |-  ( ph -> -. A e. D )
9 islnoppd.2
 |-  ( ph -> -. B e. D )
10 islnoppd.3
 |-  ( ph -> C e. ( A I B ) )
11 simpr
 |-  ( ( ph /\ t = C ) -> t = C )
12 11 eleq1d
 |-  ( ( ph /\ t = C ) -> ( t e. ( A I B ) <-> C e. ( A I B ) ) )
13 7 12 10 rspcedvd
 |-  ( ph -> E. t e. D t e. ( A I B ) )
14 8 9 13 jca31
 |-  ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) )
15 1 2 3 4 5 6 islnopp
 |-  ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) )
16 14 15 mpbird
 |-  ( ph -> A O B )