| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
coltr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
coltr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
coltr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
coltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
coltr.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 10 |
|
coltr.2 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
| 13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ∈ 𝑃 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ≠ 𝐷 ) |
| 15 |
1 2 3 11 12 13 14
|
tglinerflx1 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) |
| 16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝐶 ≠ 𝐷 → 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) ) |
| 17 |
16
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) → 𝐶 = 𝐷 ) ) |
| 18 |
17
|
orrd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) → 𝐴 = 𝐶 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) → 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) |
| 22 |
20 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) → 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) → 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ) ) |
| 24 |
23
|
orim1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( ( 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) → ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) ) |
| 25 |
19 24
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 26 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → ( 𝐵 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 27 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
| 28 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
| 29 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
| 30 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
| 31 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 33 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 35 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 36 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
| 38 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 39 |
1 3 2 33 36 35 38
|
tglngne |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 40 |
39
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐶 ≠ 𝐵 ) |
| 41 |
1 2 3 33 35 36 34 40 38
|
lncom |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐴 ∈ ( 𝐶 𝐿 𝐵 ) ) |
| 42 |
1 2 3 33 34 35 36 37 41 40
|
lnrot2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ) |
| 44 |
1 3 2 4 6 7 9
|
tglngne |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → 𝐵 ≠ 𝐶 ) |
| 46 |
1 2 3 27 28 29 30 31 32 43 45
|
ncolncol |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ ¬ ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) → ¬ ( 𝐵 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 47 |
26 46
|
condan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 48 |
25 47
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐿 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |