Metamath Proof Explorer


Theorem lncom

Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses btwnlng1.p 𝑃 = ( Base ‘ 𝐺 )
btwnlng1.i 𝐼 = ( Itv ‘ 𝐺 )
btwnlng1.l 𝐿 = ( LineG ‘ 𝐺 )
btwnlng1.g ( 𝜑𝐺 ∈ TarskiG )
btwnlng1.x ( 𝜑𝑋𝑃 )
btwnlng1.y ( 𝜑𝑌𝑃 )
btwnlng1.z ( 𝜑𝑍𝑃 )
btwnlng1.d ( 𝜑𝑋𝑌 )
lncom.1 ( 𝜑𝑍 ∈ ( 𝑌 𝐿 𝑋 ) )
Assertion lncom ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )

Proof

Step Hyp Ref Expression
1 btwnlng1.p 𝑃 = ( Base ‘ 𝐺 )
2 btwnlng1.i 𝐼 = ( Itv ‘ 𝐺 )
3 btwnlng1.l 𝐿 = ( LineG ‘ 𝐺 )
4 btwnlng1.g ( 𝜑𝐺 ∈ TarskiG )
5 btwnlng1.x ( 𝜑𝑋𝑃 )
6 btwnlng1.y ( 𝜑𝑌𝑃 )
7 btwnlng1.z ( 𝜑𝑍𝑃 )
8 btwnlng1.d ( 𝜑𝑋𝑌 )
9 lncom.1 ( 𝜑𝑍 ∈ ( 𝑌 𝐿 𝑋 ) )
10 3orcomb ( ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) )
11 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
12 1 11 2 4 5 7 6 tgbtwncomb ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑍 ∈ ( 𝑌 𝐼 𝑋 ) ) )
13 1 11 2 4 5 6 7 tgbtwncomb ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ↔ 𝑌 ∈ ( 𝑍 𝐼 𝑋 ) ) )
14 1 11 2 4 7 5 6 tgbtwncomb ( 𝜑 → ( 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ↔ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) )
15 12 13 14 3orbi123d ( 𝜑 → ( ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) ↔ ( 𝑍 ∈ ( 𝑌 𝐼 𝑋 ) ∨ 𝑌 ∈ ( 𝑍 𝐼 𝑋 ) ∨ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) ) )
16 10 15 syl5bb ( 𝜑 → ( ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ↔ ( 𝑍 ∈ ( 𝑌 𝐼 𝑋 ) ∨ 𝑌 ∈ ( 𝑍 𝐼 𝑋 ) ∨ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) ) )
17 1 3 2 4 5 6 8 7 tgellng ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
18 8 necomd ( 𝜑𝑌𝑋 )
19 1 3 2 4 6 5 18 7 tgellng ( 𝜑 → ( 𝑍 ∈ ( 𝑌 𝐿 𝑋 ) ↔ ( 𝑍 ∈ ( 𝑌 𝐼 𝑋 ) ∨ 𝑌 ∈ ( 𝑍 𝐼 𝑋 ) ∨ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) ) )
20 16 17 19 3bitr4d ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ 𝑍 ∈ ( 𝑌 𝐿 𝑋 ) ) )
21 9 20 mpbird ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )