| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglineinteq.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tglineinteq.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tglineinteq.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tglineinteq.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tglineinteq.e |
⊢ ( 𝜑 → ¬ ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
| 10 |
|
ncolncol.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 11 |
|
ncolncol.2 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐵 ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 16 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 18 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 19 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 20 |
1 3 2 4 5 6 10
|
tglngne |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
| 22 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
| 23 |
11
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐷 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐵 ≠ 𝐷 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) |
| 26 |
1 2 3 16 18 22 19 24 25
|
lncom |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐶 ∈ ( 𝐵 𝐿 𝐷 ) ) |
| 27 |
20
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 28 |
1 2 3 4 6 5 8 27 10
|
lncom |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 29 |
1 2 3 4 6 5 27 8 11 28
|
tglineelsb2 |
⊢ ( 𝜑 → ( 𝐵 𝐿 𝐴 ) = ( 𝐵 𝐿 𝐷 ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → ( 𝐵 𝐿 𝐴 ) = ( 𝐵 𝐿 𝐷 ) ) |
| 31 |
26 30
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 32 |
1 2 3 16 17 18 19 21 31
|
lncom |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 33 |
32
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐷 = 𝐵 ) → 𝐷 = 𝐵 ) |
| 35 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐷 = 𝐵 ) → 𝐷 ≠ 𝐵 ) |
| 36 |
34 35
|
pm2.21ddne |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) ∧ 𝐷 = 𝐵 ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 37 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
| 39 |
1 3 2 12 14 15 37 38
|
colrot2 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → ( 𝐶 ∈ ( 𝐷 𝐿 𝐵 ) ∨ 𝐷 = 𝐵 ) ) |
| 40 |
33 36 39
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 41 |
1 3 2 12 13 14 15 40
|
colrot1 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
| 42 |
9 41
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝐷 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |