Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglineinteq.a |
|- ( ph -> A e. P ) |
6 |
|
tglineinteq.b |
|- ( ph -> B e. P ) |
7 |
|
tglineinteq.c |
|- ( ph -> C e. P ) |
8 |
|
tglineinteq.d |
|- ( ph -> D e. P ) |
9 |
|
tglineinteq.e |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
10 |
|
ncolncol.1 |
|- ( ph -> D e. ( A L B ) ) |
11 |
|
ncolncol.2 |
|- ( ph -> D =/= B ) |
12 |
4
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> G e. TarskiG ) |
13 |
5
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> A e. P ) |
14 |
6
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> B e. P ) |
15 |
7
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> C e. P ) |
16 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> G e. TarskiG ) |
17 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> A e. P ) |
18 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> B e. P ) |
19 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. P ) |
20 |
1 3 2 4 5 6 10
|
tglngne |
|- ( ph -> A =/= B ) |
21 |
20
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> A =/= B ) |
22 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> D e. P ) |
23 |
11
|
necomd |
|- ( ph -> B =/= D ) |
24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> B =/= D ) |
25 |
|
simpr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( D L B ) ) |
26 |
1 2 3 16 18 22 19 24 25
|
lncom |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( B L D ) ) |
27 |
20
|
necomd |
|- ( ph -> B =/= A ) |
28 |
1 2 3 4 6 5 8 27 10
|
lncom |
|- ( ph -> D e. ( B L A ) ) |
29 |
1 2 3 4 6 5 27 8 11 28
|
tglineelsb2 |
|- ( ph -> ( B L A ) = ( B L D ) ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> ( B L A ) = ( B L D ) ) |
31 |
26 30
|
eleqtrrd |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( B L A ) ) |
32 |
1 2 3 16 17 18 19 21 31
|
lncom |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( A L B ) ) |
33 |
32
|
orcd |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> D = B ) |
35 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> D =/= B ) |
36 |
34 35
|
pm2.21ddne |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> ( C e. ( A L B ) \/ A = B ) ) |
37 |
8
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> D e. P ) |
38 |
|
simpr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( D e. ( B L C ) \/ B = C ) ) |
39 |
1 3 2 12 14 15 37 38
|
colrot2 |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( C e. ( D L B ) \/ D = B ) ) |
40 |
33 36 39
|
mpjaodan |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
41 |
1 3 2 12 13 14 15 40
|
colrot1 |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( A e. ( B L C ) \/ B = C ) ) |
42 |
9 41
|
mtand |
|- ( ph -> -. ( D e. ( B L C ) \/ B = C ) ) |