| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
| 2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglineinteq.a |
|- ( ph -> A e. P ) |
| 6 |
|
tglineinteq.b |
|- ( ph -> B e. P ) |
| 7 |
|
tglineinteq.c |
|- ( ph -> C e. P ) |
| 8 |
|
tglineinteq.d |
|- ( ph -> D e. P ) |
| 9 |
|
tglineinteq.e |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 10 |
|
ncolncol.1 |
|- ( ph -> D e. ( A L B ) ) |
| 11 |
|
ncolncol.2 |
|- ( ph -> D =/= B ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> G e. TarskiG ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> A e. P ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> B e. P ) |
| 15 |
7
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> C e. P ) |
| 16 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> G e. TarskiG ) |
| 17 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> A e. P ) |
| 18 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> B e. P ) |
| 19 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. P ) |
| 20 |
1 3 2 4 5 6 10
|
tglngne |
|- ( ph -> A =/= B ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> A =/= B ) |
| 22 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> D e. P ) |
| 23 |
11
|
necomd |
|- ( ph -> B =/= D ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> B =/= D ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( D L B ) ) |
| 26 |
1 2 3 16 18 22 19 24 25
|
lncom |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( B L D ) ) |
| 27 |
20
|
necomd |
|- ( ph -> B =/= A ) |
| 28 |
1 2 3 4 6 5 8 27 10
|
lncom |
|- ( ph -> D e. ( B L A ) ) |
| 29 |
1 2 3 4 6 5 27 8 11 28
|
tglineelsb2 |
|- ( ph -> ( B L A ) = ( B L D ) ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> ( B L A ) = ( B L D ) ) |
| 31 |
26 30
|
eleqtrrd |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( B L A ) ) |
| 32 |
1 2 3 16 17 18 19 21 31
|
lncom |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> C e. ( A L B ) ) |
| 33 |
32
|
orcd |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ C e. ( D L B ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> D = B ) |
| 35 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> D =/= B ) |
| 36 |
34 35
|
pm2.21ddne |
|- ( ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) /\ D = B ) -> ( C e. ( A L B ) \/ A = B ) ) |
| 37 |
8
|
adantr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> D e. P ) |
| 38 |
|
simpr |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( D e. ( B L C ) \/ B = C ) ) |
| 39 |
1 3 2 12 14 15 37 38
|
colrot2 |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( C e. ( D L B ) \/ D = B ) ) |
| 40 |
33 36 39
|
mpjaodan |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
| 41 |
1 3 2 12 13 14 15 40
|
colrot1 |
|- ( ( ph /\ ( D e. ( B L C ) \/ B = C ) ) -> ( A e. ( B L C ) \/ B = C ) ) |
| 42 |
9 41
|
mtand |
|- ( ph -> -. ( D e. ( B L C ) \/ B = C ) ) |