| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineintmo.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglineintmo.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tglineintmo.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | tglineintmo.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | coltr.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | coltr.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | coltr.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | coltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | coltr.1 |  |-  ( ph -> A e. ( B L C ) ) | 
						
							| 10 |  | coltr.2 |  |-  ( ph -> ( B e. ( C L D ) \/ C = D ) ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ C =/= D ) -> G e. TarskiG ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ph /\ C =/= D ) -> C e. P ) | 
						
							| 13 | 8 | adantr |  |-  ( ( ph /\ C =/= D ) -> D e. P ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ C =/= D ) -> C =/= D ) | 
						
							| 15 | 1 2 3 11 12 13 14 | tglinerflx1 |  |-  ( ( ph /\ C =/= D ) -> C e. ( C L D ) ) | 
						
							| 16 | 15 | ex |  |-  ( ph -> ( C =/= D -> C e. ( C L D ) ) ) | 
						
							| 17 | 16 | necon1bd |  |-  ( ph -> ( -. C e. ( C L D ) -> C = D ) ) | 
						
							| 18 | 17 | orrd |  |-  ( ph -> ( C e. ( C L D ) \/ C = D ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ A = C ) -> ( C e. ( C L D ) \/ C = D ) ) | 
						
							| 20 |  | simplr |  |-  ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A = C ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> C e. ( C L D ) ) | 
						
							| 22 | 20 21 | eqeltrd |  |-  ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A e. ( C L D ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ph /\ A = C ) -> ( C e. ( C L D ) -> A e. ( C L D ) ) ) | 
						
							| 24 | 23 | orim1d |  |-  ( ( ph /\ A = C ) -> ( ( C e. ( C L D ) \/ C = D ) -> ( A e. ( C L D ) \/ C = D ) ) ) | 
						
							| 25 | 19 24 | mpd |  |-  ( ( ph /\ A = C ) -> ( A e. ( C L D ) \/ C = D ) ) | 
						
							| 26 | 10 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> ( B e. ( C L D ) \/ C = D ) ) | 
						
							| 27 | 4 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> G e. TarskiG ) | 
						
							| 28 | 5 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> A e. P ) | 
						
							| 29 | 7 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> C e. P ) | 
						
							| 30 | 8 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> D e. P ) | 
						
							| 31 | 6 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. P ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( A e. ( C L D ) \/ C = D ) ) | 
						
							| 33 | 4 | adantr |  |-  ( ( ph /\ A =/= C ) -> G e. TarskiG ) | 
						
							| 34 | 5 | adantr |  |-  ( ( ph /\ A =/= C ) -> A e. P ) | 
						
							| 35 | 7 | adantr |  |-  ( ( ph /\ A =/= C ) -> C e. P ) | 
						
							| 36 | 6 | adantr |  |-  ( ( ph /\ A =/= C ) -> B e. P ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ A =/= C ) -> A =/= C ) | 
						
							| 38 | 9 | adantr |  |-  ( ( ph /\ A =/= C ) -> A e. ( B L C ) ) | 
						
							| 39 | 1 3 2 33 36 35 38 | tglngne |  |-  ( ( ph /\ A =/= C ) -> B =/= C ) | 
						
							| 40 | 39 | necomd |  |-  ( ( ph /\ A =/= C ) -> C =/= B ) | 
						
							| 41 | 1 2 3 33 35 36 34 40 38 | lncom |  |-  ( ( ph /\ A =/= C ) -> A e. ( C L B ) ) | 
						
							| 42 | 1 2 3 33 34 35 36 37 41 40 | lnrot2 |  |-  ( ( ph /\ A =/= C ) -> B e. ( A L C ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. ( A L C ) ) | 
						
							| 44 | 1 3 2 4 6 7 9 | tglngne |  |-  ( ph -> B =/= C ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B =/= C ) | 
						
							| 46 | 1 2 3 27 28 29 30 31 32 43 45 | ncolncol |  |-  ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( B e. ( C L D ) \/ C = D ) ) | 
						
							| 47 | 26 46 | condan |  |-  ( ( ph /\ A =/= C ) -> ( A e. ( C L D ) \/ C = D ) ) | 
						
							| 48 | 25 47 | pm2.61dane |  |-  ( ph -> ( A e. ( C L D ) \/ C = D ) ) |