| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
| 2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
coltr.a |
|- ( ph -> A e. P ) |
| 6 |
|
coltr.b |
|- ( ph -> B e. P ) |
| 7 |
|
coltr.c |
|- ( ph -> C e. P ) |
| 8 |
|
coltr.d |
|- ( ph -> D e. P ) |
| 9 |
|
coltr.1 |
|- ( ph -> A e. ( B L C ) ) |
| 10 |
|
coltr.2 |
|- ( ph -> ( B e. ( C L D ) \/ C = D ) ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ C =/= D ) -> G e. TarskiG ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ C =/= D ) -> C e. P ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ C =/= D ) -> D e. P ) |
| 14 |
|
simpr |
|- ( ( ph /\ C =/= D ) -> C =/= D ) |
| 15 |
1 2 3 11 12 13 14
|
tglinerflx1 |
|- ( ( ph /\ C =/= D ) -> C e. ( C L D ) ) |
| 16 |
15
|
ex |
|- ( ph -> ( C =/= D -> C e. ( C L D ) ) ) |
| 17 |
16
|
necon1bd |
|- ( ph -> ( -. C e. ( C L D ) -> C = D ) ) |
| 18 |
17
|
orrd |
|- ( ph -> ( C e. ( C L D ) \/ C = D ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ A = C ) -> ( C e. ( C L D ) \/ C = D ) ) |
| 20 |
|
simplr |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A = C ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> C e. ( C L D ) ) |
| 22 |
20 21
|
eqeltrd |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A e. ( C L D ) ) |
| 23 |
22
|
ex |
|- ( ( ph /\ A = C ) -> ( C e. ( C L D ) -> A e. ( C L D ) ) ) |
| 24 |
23
|
orim1d |
|- ( ( ph /\ A = C ) -> ( ( C e. ( C L D ) \/ C = D ) -> ( A e. ( C L D ) \/ C = D ) ) ) |
| 25 |
19 24
|
mpd |
|- ( ( ph /\ A = C ) -> ( A e. ( C L D ) \/ C = D ) ) |
| 26 |
10
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> ( B e. ( C L D ) \/ C = D ) ) |
| 27 |
4
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> G e. TarskiG ) |
| 28 |
5
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> A e. P ) |
| 29 |
7
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> C e. P ) |
| 30 |
8
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> D e. P ) |
| 31 |
6
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. P ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( A e. ( C L D ) \/ C = D ) ) |
| 33 |
4
|
adantr |
|- ( ( ph /\ A =/= C ) -> G e. TarskiG ) |
| 34 |
5
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. P ) |
| 35 |
7
|
adantr |
|- ( ( ph /\ A =/= C ) -> C e. P ) |
| 36 |
6
|
adantr |
|- ( ( ph /\ A =/= C ) -> B e. P ) |
| 37 |
|
simpr |
|- ( ( ph /\ A =/= C ) -> A =/= C ) |
| 38 |
9
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. ( B L C ) ) |
| 39 |
1 3 2 33 36 35 38
|
tglngne |
|- ( ( ph /\ A =/= C ) -> B =/= C ) |
| 40 |
39
|
necomd |
|- ( ( ph /\ A =/= C ) -> C =/= B ) |
| 41 |
1 2 3 33 35 36 34 40 38
|
lncom |
|- ( ( ph /\ A =/= C ) -> A e. ( C L B ) ) |
| 42 |
1 2 3 33 34 35 36 37 41 40
|
lnrot2 |
|- ( ( ph /\ A =/= C ) -> B e. ( A L C ) ) |
| 43 |
42
|
adantr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. ( A L C ) ) |
| 44 |
1 3 2 4 6 7 9
|
tglngne |
|- ( ph -> B =/= C ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B =/= C ) |
| 46 |
1 2 3 27 28 29 30 31 32 43 45
|
ncolncol |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( B e. ( C L D ) \/ C = D ) ) |
| 47 |
26 46
|
condan |
|- ( ( ph /\ A =/= C ) -> ( A e. ( C L D ) \/ C = D ) ) |
| 48 |
25 47
|
pm2.61dane |
|- ( ph -> ( A e. ( C L D ) \/ C = D ) ) |