Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
coltr.a |
|- ( ph -> A e. P ) |
6 |
|
coltr.b |
|- ( ph -> B e. P ) |
7 |
|
coltr.c |
|- ( ph -> C e. P ) |
8 |
|
coltr.d |
|- ( ph -> D e. P ) |
9 |
|
coltr.1 |
|- ( ph -> A e. ( B L C ) ) |
10 |
|
coltr.2 |
|- ( ph -> ( B e. ( C L D ) \/ C = D ) ) |
11 |
4
|
adantr |
|- ( ( ph /\ C =/= D ) -> G e. TarskiG ) |
12 |
7
|
adantr |
|- ( ( ph /\ C =/= D ) -> C e. P ) |
13 |
8
|
adantr |
|- ( ( ph /\ C =/= D ) -> D e. P ) |
14 |
|
simpr |
|- ( ( ph /\ C =/= D ) -> C =/= D ) |
15 |
1 2 3 11 12 13 14
|
tglinerflx1 |
|- ( ( ph /\ C =/= D ) -> C e. ( C L D ) ) |
16 |
15
|
ex |
|- ( ph -> ( C =/= D -> C e. ( C L D ) ) ) |
17 |
16
|
necon1bd |
|- ( ph -> ( -. C e. ( C L D ) -> C = D ) ) |
18 |
17
|
orrd |
|- ( ph -> ( C e. ( C L D ) \/ C = D ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ A = C ) -> ( C e. ( C L D ) \/ C = D ) ) |
20 |
|
simplr |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A = C ) |
21 |
|
simpr |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> C e. ( C L D ) ) |
22 |
20 21
|
eqeltrd |
|- ( ( ( ph /\ A = C ) /\ C e. ( C L D ) ) -> A e. ( C L D ) ) |
23 |
22
|
ex |
|- ( ( ph /\ A = C ) -> ( C e. ( C L D ) -> A e. ( C L D ) ) ) |
24 |
23
|
orim1d |
|- ( ( ph /\ A = C ) -> ( ( C e. ( C L D ) \/ C = D ) -> ( A e. ( C L D ) \/ C = D ) ) ) |
25 |
19 24
|
mpd |
|- ( ( ph /\ A = C ) -> ( A e. ( C L D ) \/ C = D ) ) |
26 |
10
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> ( B e. ( C L D ) \/ C = D ) ) |
27 |
4
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> G e. TarskiG ) |
28 |
5
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> A e. P ) |
29 |
7
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> C e. P ) |
30 |
8
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> D e. P ) |
31 |
6
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. P ) |
32 |
|
simpr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( A e. ( C L D ) \/ C = D ) ) |
33 |
4
|
adantr |
|- ( ( ph /\ A =/= C ) -> G e. TarskiG ) |
34 |
5
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. P ) |
35 |
7
|
adantr |
|- ( ( ph /\ A =/= C ) -> C e. P ) |
36 |
6
|
adantr |
|- ( ( ph /\ A =/= C ) -> B e. P ) |
37 |
|
simpr |
|- ( ( ph /\ A =/= C ) -> A =/= C ) |
38 |
9
|
adantr |
|- ( ( ph /\ A =/= C ) -> A e. ( B L C ) ) |
39 |
1 3 2 33 36 35 38
|
tglngne |
|- ( ( ph /\ A =/= C ) -> B =/= C ) |
40 |
39
|
necomd |
|- ( ( ph /\ A =/= C ) -> C =/= B ) |
41 |
1 2 3 33 35 36 34 40 38
|
lncom |
|- ( ( ph /\ A =/= C ) -> A e. ( C L B ) ) |
42 |
1 2 3 33 34 35 36 37 41 40
|
lnrot2 |
|- ( ( ph /\ A =/= C ) -> B e. ( A L C ) ) |
43 |
42
|
adantr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B e. ( A L C ) ) |
44 |
1 3 2 4 6 7 9
|
tglngne |
|- ( ph -> B =/= C ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> B =/= C ) |
46 |
1 2 3 27 28 29 30 31 32 43 45
|
ncolncol |
|- ( ( ( ph /\ A =/= C ) /\ -. ( A e. ( C L D ) \/ C = D ) ) -> -. ( B e. ( C L D ) \/ C = D ) ) |
47 |
26 46
|
condan |
|- ( ( ph /\ A =/= C ) -> ( A e. ( C L D ) \/ C = D ) ) |
48 |
25 47
|
pm2.61dane |
|- ( ph -> ( A e. ( C L D ) \/ C = D ) ) |