Metamath Proof Explorer


Theorem tglinerflx1

Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
tglineelsb2.1
|- ( ph -> P e. B )
tglineelsb2.2
|- ( ph -> Q e. B )
tglineelsb2.4
|- ( ph -> P =/= Q )
Assertion tglinerflx1
|- ( ph -> P e. ( P L Q ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 tglineelsb2.1
 |-  ( ph -> P e. B )
6 tglineelsb2.2
 |-  ( ph -> Q e. B )
7 tglineelsb2.4
 |-  ( ph -> P =/= Q )
8 eqid
 |-  ( dist ` G ) = ( dist ` G )
9 1 8 2 4 5 6 tgbtwntriv1
 |-  ( ph -> P e. ( P I Q ) )
10 1 2 3 4 5 6 5 7 9 btwnlng1
 |-  ( ph -> P e. ( P L Q ) )