Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglineelsb2.p | |- B = ( Base ` G ) |
|
| tglineelsb2.i | |- I = ( Itv ` G ) |
||
| tglineelsb2.l | |- L = ( LineG ` G ) |
||
| tglineelsb2.g | |- ( ph -> G e. TarskiG ) |
||
| tglineelsb2.1 | |- ( ph -> P e. B ) |
||
| tglineelsb2.2 | |- ( ph -> Q e. B ) |
||
| tglineelsb2.4 | |- ( ph -> P =/= Q ) |
||
| Assertion | tglinerflx2 | |- ( ph -> Q e. ( P L Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | |- B = ( Base ` G ) |
|
| 2 | tglineelsb2.i | |- I = ( Itv ` G ) |
|
| 3 | tglineelsb2.l | |- L = ( LineG ` G ) |
|
| 4 | tglineelsb2.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglineelsb2.1 | |- ( ph -> P e. B ) |
|
| 6 | tglineelsb2.2 | |- ( ph -> Q e. B ) |
|
| 7 | tglineelsb2.4 | |- ( ph -> P =/= Q ) |
|
| 8 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 9 | 1 8 2 4 5 6 | tgbtwntriv2 | |- ( ph -> Q e. ( P I Q ) ) |
| 10 | 1 2 3 4 5 6 6 7 9 | btwnlng1 | |- ( ph -> Q e. ( P L Q ) ) |