Metamath Proof Explorer
Description: Reflexivity law for line membership. Part of theorem 6.17 of
Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tglineelsb2.p |
|
|
|
tglineelsb2.i |
|
|
|
tglineelsb2.l |
|
|
|
tglineelsb2.g |
|
|
|
tglineelsb2.1 |
|
|
|
tglineelsb2.2 |
|
|
|
tglineelsb2.4 |
|
|
Assertion |
tglinerflx2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineelsb2.p |
|
| 2 |
|
tglineelsb2.i |
|
| 3 |
|
tglineelsb2.l |
|
| 4 |
|
tglineelsb2.g |
|
| 5 |
|
tglineelsb2.1 |
|
| 6 |
|
tglineelsb2.2 |
|
| 7 |
|
tglineelsb2.4 |
|
| 8 |
|
eqid |
|
| 9 |
1 8 2 4 5 6
|
tgbtwntriv2 |
|
| 10 |
1 2 3 4 5 6 6 7 9
|
btwnlng1 |
|