Metamath Proof Explorer


Theorem tglinecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglineelsb2.1 φPB
tglineelsb2.2 φQB
tglineelsb2.4 φPQ
Assertion tglinecom φPLQ=QLP

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglineelsb2.1 φPB
6 tglineelsb2.2 φQB
7 tglineelsb2.4 φPQ
8 4 adantr φxPLQG𝒢Tarski
9 6 adantr φxPLQQB
10 5 adantr φxPLQPB
11 1 3 2 4 5 6 7 tglnssp φPLQB
12 11 sselda φxPLQxB
13 7 necomd φQP
14 13 adantr φxPLQQP
15 simpr φxPLQxPLQ
16 1 2 3 8 9 10 12 14 15 lncom φxPLQxQLP
17 4 adantr φxQLPG𝒢Tarski
18 5 adantr φxQLPPB
19 6 adantr φxQLPQB
20 1 3 2 4 6 5 13 tglnssp φQLPB
21 20 sselda φxQLPxB
22 7 adantr φxQLPPQ
23 simpr φxQLPxQLP
24 1 2 3 17 18 19 21 22 23 lncom φxQLPxPLQ
25 16 24 impbida φxPLQxQLP
26 25 eqrdv φPLQ=QLP